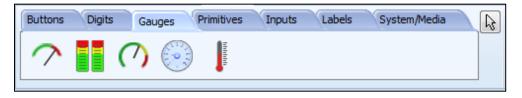


ViSi-Genie Gauges


DOCUMENT DATE: 25th APRIL 2019

DOCUMENT REVISION: 1.2

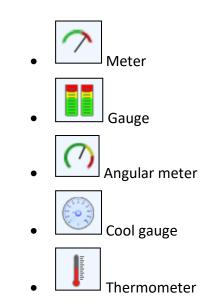
Description

This Application Note explores the possibilities provided by ViSi-Genie for the **Gauges** objects:

This application note requires:

- Workshop4 has been installed according to the document Workshop4 Installation;
- The user is familiar with the Workshop4 environment and with the fundamentals of ViSi-Genie, as described in Workshop4 User Guide and ViSi-Genie User Guide;
- When downloading an application note, a list of recommended application notes is shown. It is assumed that the user has read or has a working knowledge of the topics discussed in these recommended application notes.

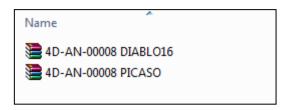
Six ViSi-Genie projects are provided as examples to help you along this application note.


Content

Description2
Content2
Application Overview3
Setup Procedure
Create a New Project4
Create a New Project4
Simulation Procedures4
Meter Options6
Angle Option7
Minimum and Maximum8
Labels Options8
Needle Options9
Scale Options10
Areas Options11
Ticks Options12
Gauge Options
Bevel Options14
Scale Options15
Angular Meter Options
Angle Option18
Minimum and Maximum19
Labels Options19

Decimal Places20
Needle Options20
Centre Dot Options21
Zone Options21
Ticks Options23
Cool Gauge Options25
Arc and Threshold Option26
Minimum and Maximum27
Logarithmic Option27
Display Options28
Divisions Options29
Thermometer Options
Scale Options30
Value Options32
Build and Upload the Project33
Debugger Output33
Launch the Debugger33
Use the Debugger34
Reading the Value from the Cool Gauge 34
Setting the Value to the Cool Gauge 34
Proprietary Information35
Disclaimer of Warranties & Limitation of Liability35

Application Overview


It is often difficult to design a graphical display without being able to see the immediate results of the application code. ViSi-Genie is the perfect software tool that allows the user to see the instant results of their desired graphical layout with this large selection of gauges and meters that can simply be dragged and dropped onto the simulated module display.

Each object can have properties edited and at the click of a button, all relevant code is produced in the user program. Each feature of ViSi-Genie will be outlined with examples below.

Setup Procedure

This application note comes with a zip file which contains two ViSi-Genie projects.

For instructions on how to launch Workshop4, how to open a ViSi-Genie project, and how to change the target display, kindly refer to the section "Setup Procedure" of the application note:

ViSi Genie Getting Started – First Project for Picaso
ViSi Genie Getting Started – First Project for Diablo16 Displays

Create a New Project

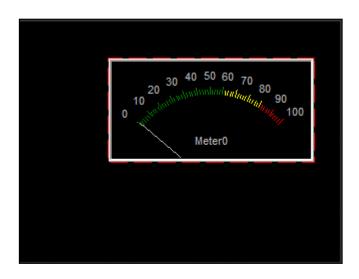
Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to the section "Create a New Project" of the application note

ViSi Genie Getting Started – First Project for Picaso
ViSi Genie Getting Started – First Project for Diablo16 Displays

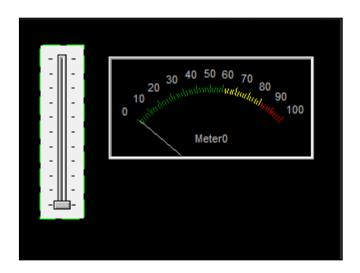
Simulation Procedures

Select the **Home** menu to display the objects:

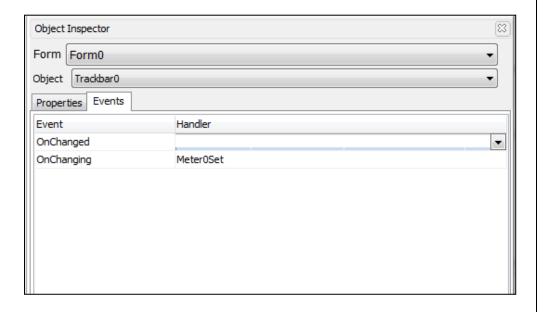

The **Gauges** objects are located on the Gauges pane:

To add an object, first click on the desired icon, here start with the first one, the **Meter**...

...and then click on the WYSIWYG screen to place it.


Add a track-bar as input object...

...from the **Inputs** pane...

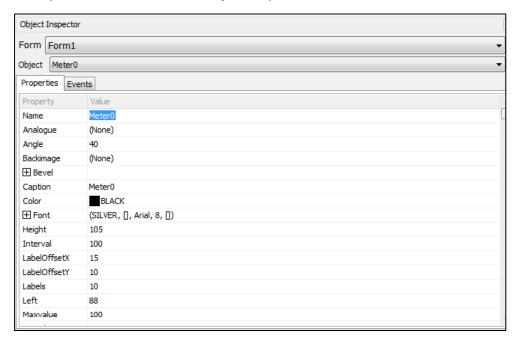

...and place it on the left of the form:

By default, the track-bar has the following minimum and maximum values:

Maxvalue	100
Minvalue	0

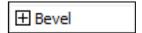
Define the event onChanging for the TrackBar0 as Meter0Set:

Each time the cursor on the track-bar is moved, the meter is updated accordingly.


Meter Options

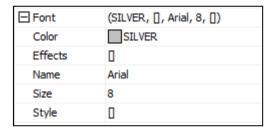
You can load the example...

Example: 4D-AN-00008 PICASO— Meter or 4D-AN-00008 DIABLO16 — Meter


...or follow the procedures described hereafter.

The options are listed on the Object Inspector:

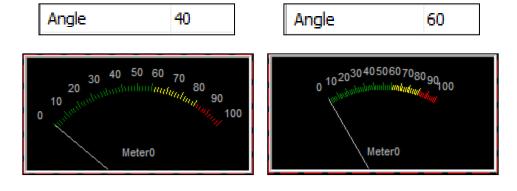
Standard options are font, colour, size, back image... are not going to be discussed here.


For example, the bevel can be full customised. Press the $^{\scriptsize fill }$ close on the line **Bevel**...

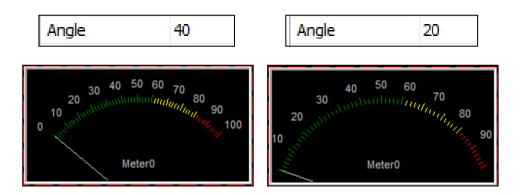
...to display all the possible options for the bevel:

Property	Value
☐ Bevel	
BorderColor	dBtnFace
BorderWidth	0
InnerColor	BLACK
InnerHighlight	dBtnHighlight
InnerOutline	None
InnerShadow	dBtnShadow
InnerSpace	1
InnerStyle	Lowered
Innerwidth	2
OuterColor	dBtnFace
OuterHighlight	dBtnHighlight
OuterOutline	Outer
OuterShadow	dBtnShadow
OuterSpace	0
OuterStyle	Raised
Outerwidth	1
Visible	Yes

The font options are under the line **Font**...



Angle Option


By default, the angle is set to 40°.

Here is an example with **Angle** set to 60°...

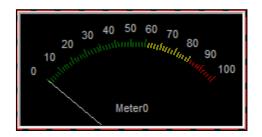
...and to 20°:

Minimum and Maximum

Minimum and maximum are defined by:

Maxvalue	100
Minvalue	0

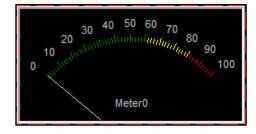
Just enter the new values.

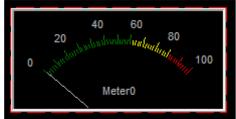

Labels Options

Three options are available:

LabelOffsetX	15
LabelOffsetY	10
Labels	10

The Labels value defines the number of labels.

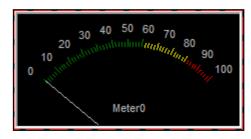

Default value is 10 labels:



Here an example with 5 labels:

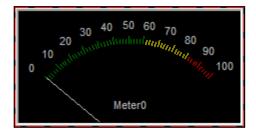
LabelOffsetX	15
LabelOffsetY	10
Labels	10

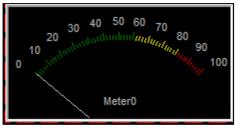
LabelOffsetX	15
LabelOffsetY	10
Labels	5



LabelOffsetX and **LabelOffsetY** define the position of the labels.

Default values are 15 on horizontal axis and 10 on vertical axis:

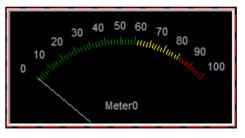

LabelOffsetX	15
LabelOffsetY	10
Labels	10

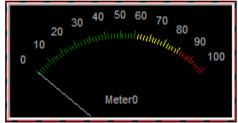


Setting 20 to **LabelOffsetX** widens the labels on the horizontal axis:

LabelOffsetX	15
LabelOffsetY	10
Labels	10

LabelOffsetX	20
LabelOffsetY	10
Labels	10

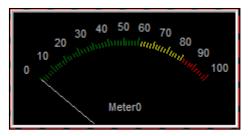




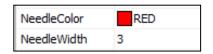
Setting 15 to **LabelOffsetY** widens the labels on the vertical axis:

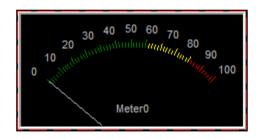
LabelOffsetX	15	
LabelOffsetY	10	
Labels	10	

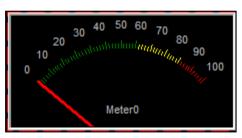
LabelOffsetX	15	
LabelOffsetY	15	
Labels	10	



Needle Options

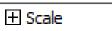

By default, the needle colour is silver and its width is 1:





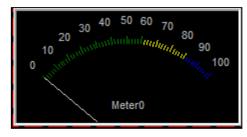
To increase readability, let's choose red as colour and 3 as width:

NeedleColor SILVER
NeedleWidth 1



Scale Options

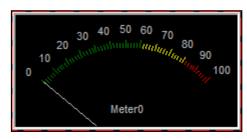
The **Scale** options are under the line



Click on the to display them:

☐ Scale	
Color 1	GREEN
Color2	YELLOW
Color3	RED
Enlarge	5
Heightmax	8
Heightmin	5
Percent1	60
Percent2	25
Ticks	61
Visible	Yes

Three areas are available, each one with its colour. Colours can be changed. Here the colour of the last area is set to blue:

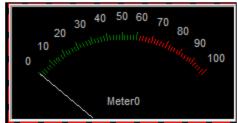


Areas Options

The areas are defined by two values, **Percent1** and **Percent2**:

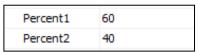
Percent1	60	
Percent2	25	

• The first area goes from 0% to **Percent1**, here from 0% to 60%;

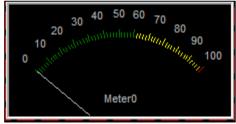

- The second area covers additional **Percent2**starting from **Percent1**, here 25% starting from 60%, so from 60% to 85%;
- The third area includes what's left up to 100%, here from 85% to 100%.

Setting **Percent2** to 0 skips the 2nd area. The yellow area has disappeared and the red one starts at 60%:

Percent1	60	
Percent2	25	

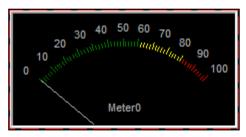

Percent1	60
Percent2	0

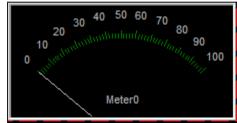




Setting **Percent2** to 40 skips the 3rd area. The red area has disappeared and the yellow one goes up to 100%:

Percent1	60
Percent2	25

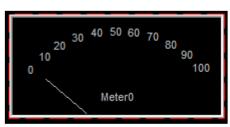




Setting **Percent1** to 100% skips the 2^{nd} and 3^{rd} areas. Only the green area is shown, from 0% to 100%:

Percent1 60 Percent2 25

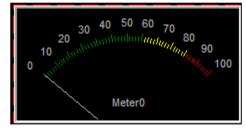
Percent1	100	
Percent2	0	

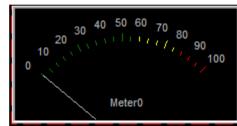


An alternative consists on defining the same colour for different areas.

Ticks Options

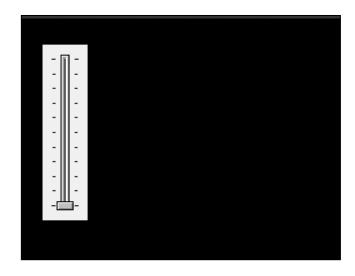
The ticks can be hidden by setting **Visible** to **No**:


Visible No



The number of ticks is defined by **Ticks**, with default value set to 61 on the left. On the right an example of the same meter with 21 ticks:

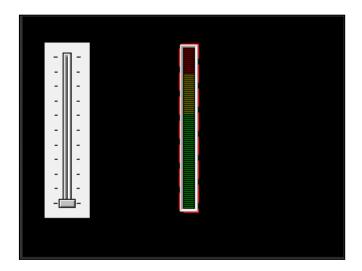
Ticks 61


Gauge Options

You can load the example...

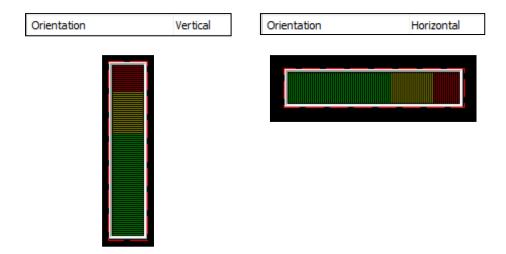
Example: 4D-AN-00008 PICASO - Gauge or 4D-AN-00008 DIABLO16 - Gauge

...or follow the procedures described hereafter.


Delete the Meter0 object...

...add a Gauge object...

...to the form...



...and update the event **onChanging** for the **TrackBar0**to **Gauge0Set**:

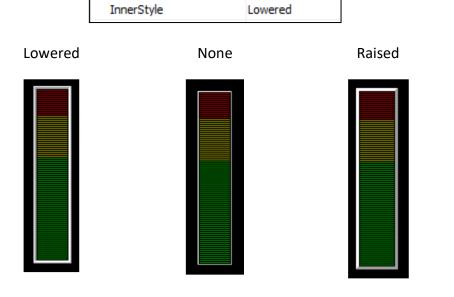
Orientation Options

The gauge can be vertical or horizontal:

Bevel Options

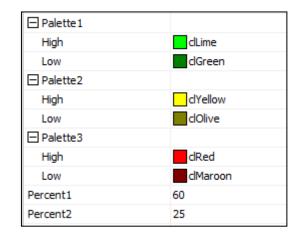
The Bevel properties include all the options:

⊞ Bevel


Click on the to show the list:

Property	Value
Bevel	
BorderColor	clBtnFace
BorderWidth	0
InnerColor	BLACK
InnerHighlight	dBtnHighlight
InnerOutline	None
InnerShadow	clBtnShadow
InnerSpace	1
InnerStyle	Lowered
Innerwidth	2
OuterColor	clBtnFace
OuterHighlight	dBtnHighlight
OuterOutline	Outer
OuterShadow	clBtnShadow
OuterSpace	0
OuterStyle	Raised
Outerwidth	1
Visible	Yes

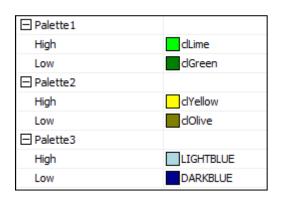
The bevel can be shown or hidden:



The style of the bevel is selectable among three options:

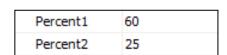
➡ Palette1
 ➡ Palette2
 ➡ Palette3
 Percent1
 Percent2
 25

Click on the $\stackrel{\textstyle\boxplus}{}$ to display the details:


Three areas are available, each one with its colour.

Scale Options

The gauge is divided in three areas:

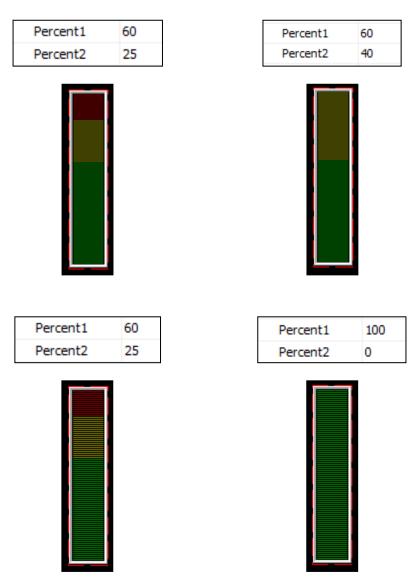

Page 16 of 35

Colours can be changed. Here, the Palette3 is set to blue:

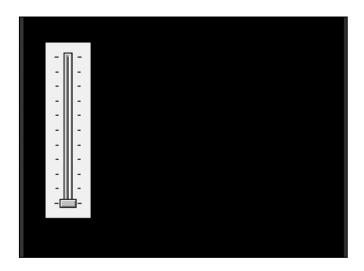
The areas are defined by two values, **Percent1** and **Percent2**:

- The first area goes from 0% to **Percent1**, here from 0% to 60%;
- The second area covers additional **Percent2**starting from **Percent1**, here 25% starting from 60%, so from 60% to 85%;
- The third area includes what's left up to 100%, here from 85% to 100%.

Setting **Percent2** to 0 skips the 2nd area. The yellow area has disappeared and the red one starts at 60%:



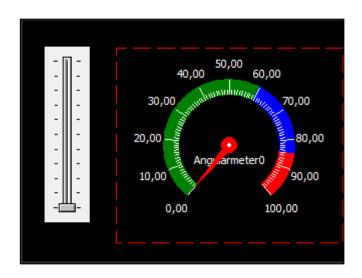
Setting **Percent2** to 40 skips the 3rd area. The red area has disappeared and the yellow one goes up to 100%.


An alternative consists on defining the same colour for different areas.

Angular Meter Options

You can load the example...

Example: 4D-AN-00008 PICASO — Angular Meter or 4D-AN-00008 DIABLO16 — Angular Meter


...or follow the procedures described hereafter. Delete the Gauge0 object...

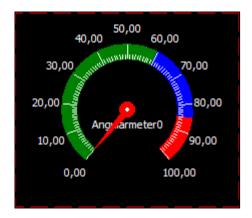

...add an Angular Meter object...

...to the form...

...and update the event **onChanging** for the **TrackBar0** to **AngularMeter0Set**:

Angle Option

By default, the angle is set to 40° and the offset to 280°.

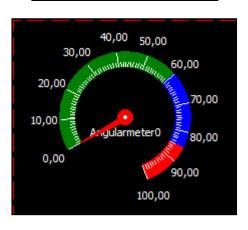

Angle	40
AngleOffset	280

Both parameters are linked.

Here is an example with Angle set to 60° but Angle Offset unchanged...

Angle	40
AngleOffset	280

Angle	60
AngleOffset	280



... **AngleOffset** changed to 240°:

Angle	60
AngleOffset	280

Angle	60
AngleOffset	240

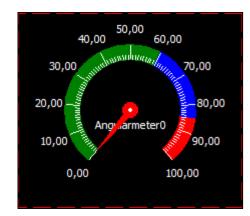
Minimum and Maximum

Minimum and maximum are defined by:

Maxvalue	100
Minvalue	0

Just enter the new values.

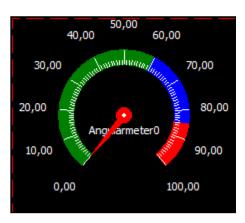
Labels Options


Three options are available:

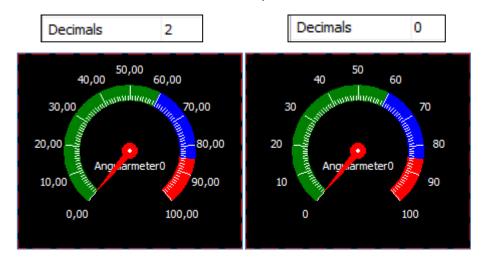
Labels	10
☐ LabelsFont	(dWhite, [], Tahoma, 8, [])
Color	dWhite
Effects	
Name	Tahoma
Size	8
Style	
LabelsOffset	30

The **Labels** value defines the number of labels, with default value 10 labels. Here an example with 5 labels:

Labels 10



Setting 40 to **LabelOffset** widens the labels:



Decimal Places

Decimals defines the number of decimal, with default value 2.

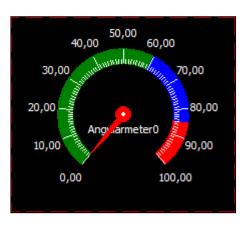
Needle Options

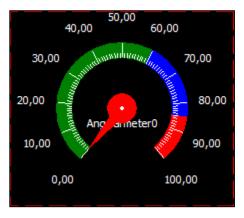
By default, the needle colour is red and its length is automatic with the value set to -1:

The dot at the centre is white with a size of 2:


CenterDotColor	dWhite
CenterDotWidth	2

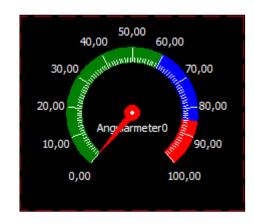
To increase readability, let's choose 65 as length for the needle:





Let's change the width of the base and set it to 15:

NeedleBasewidth	15
NeedleColor	clRed
NeedleLength	-1

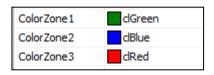


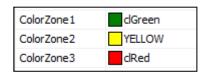
Centre Dot Options

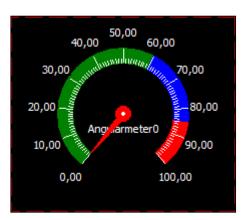
The dot in the centre can also be customised:

Zone Options

The logic for the zones for the **AngularMeter** object is the same as the scale for the **Meter** object.

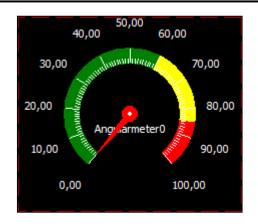

Three zones are available, each one with its colour...


ColorZone1	dGreen
ColorZone2	dBlue
ColorZone3	dRed

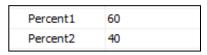

...and the zones are defined by two percentages:

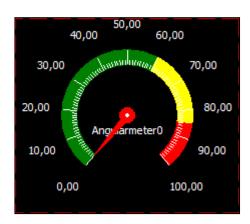
Percent1	60
Percent2	25

Colours can be changed. Here the colour of the area in the middle is set to yellow:



The areas are defined by two values, **Percent1** and **Percent2**:

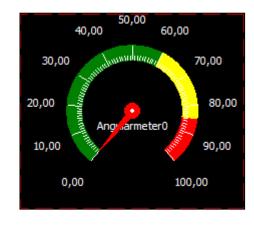

Percent1	60	
Percent2	25	



- The first area goes from 0% to Percent1, here from 0% to 60%;
- The second area covers additional Percent2starting from Percent1, here 25% starting from 60%, so from 60% to 85%;
- The third area includes what's left up to 100%, here from 85% to 100%.
- Setting **Percent2** to 0 skips the 2nd area. The yellow area has disappeared and the red one starts at 60%:

Setting **Percent2** to 40 skips the 3rd area. The red area has disappeared and the yellow one goes up to 100%:

Percent1	60	
Percent2	25	



Setting **Percent1** to 100% skips the 2nd and 3rd areas. Only the green area is shown, from 0% to 100%:

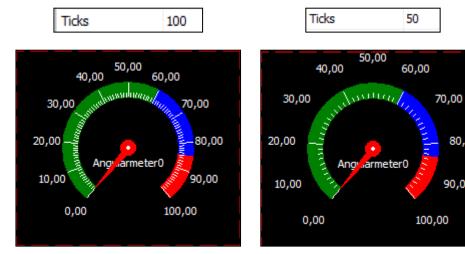
Percent1	60	
Percent2	25	

Percent1	100	
Percent2	0	

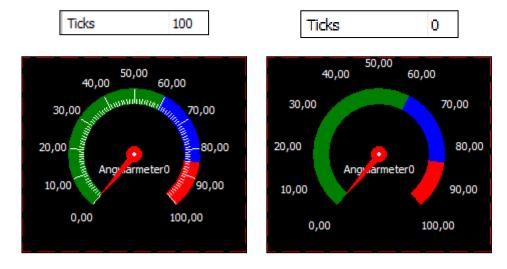
An alternative consists on defining the same colour for different zones.

Ticks Options

Page 23 of 35

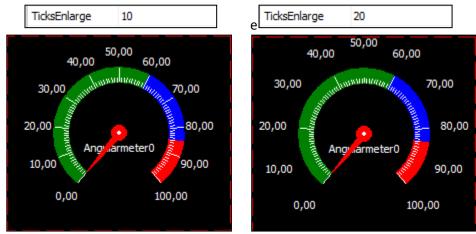

The ticks can be hidden and resized:

Ticks	100
TicksColor	dWhite
TicksEnlarge	10
TicksMax	14
TicksMin	5

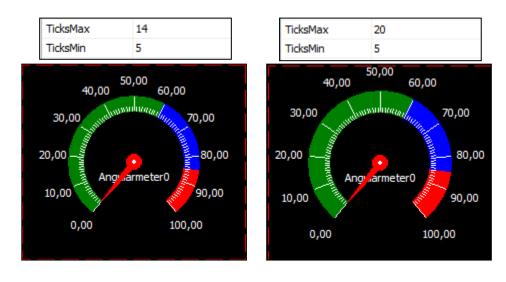

80,00

90,00

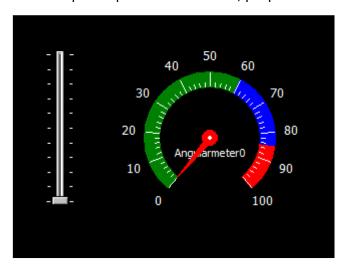
The number of ticks is defined by **Ticks**, with default value set to 100 on the left. On the right an example of the same meter with 50 ticks:



To hide the ticks, just set **Ticks** to 0:

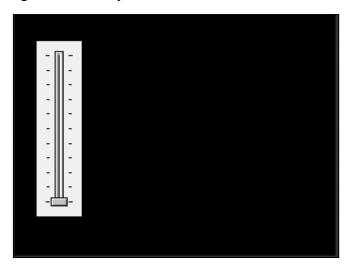


There two kinds of ticks, large and small. A large tick is shown every TicksEnlargetick.


On the left, default is every 10th; on the right, set to every 20th:

The size of the ticks can be customised by changing **TicksMax** and **TicksMin**:

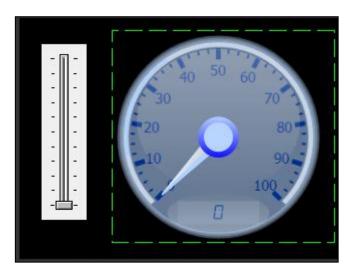
Combining different options produce this result, proposed as example:


Cool Gauge Options

You can load the example...

Example: 4D-AN-00008 PICASO — Cool Gauge or 4D-AN-00008 DIABLO16 — Cool Gauge

...or follow the procedures described hereafter.


Delete the Angular Meter object...

...add a Cool Gauge object...

...to the form...

...and update the event **onChanging** for the **TrackBar0** to **CoolGauge0Set**:

The **CoolGauge** object combines a needle and a display in a rich graphical interface.

Arc and Threshold Option

By default, the arcof the dial starts at 135° and stops at 405°. The threshold is defined by a **StartAngle** and a **SweepAngle**.

Property	Value
☐ Arc	
Color	0xFFEFE0
Opacity	200
StartAngle	130
StopAngle	410
☐ Threshold	
Center	25
Color	0xFFD0AF
EndValue	100
Opacity	200
Span	25
StartAngle	130
StartValue	0
SweepAngle	280
ThresholdKind	Angle

Both parameters are linked.

Property	Value
☐ Arc	
Color	0xFFEFE0
Opacity	200
StartAngle	130
StopAngle	410
☐ Threshold	
Center	25
Color	0xFFD0AF
EndValue	100
Opacity	200
Span	25
StartAngle	130
StartValue	0
SweepAngle	280
ThresholdKind	Angle

Property	Value
⊟ Arc	
Color	0xFFEFE0
Opacity	200
StartAngle	150
StopAngle	390
☐ Threshold	
Center	25
Color	0xFFD0AF
EndValue	100
Opacity	200
Span	25
StartAngle	150
StartValue	0
SweepAngle	240
ThresholdKind	Angle

Minimum and Maximum

Minimum and maximum are defined by:

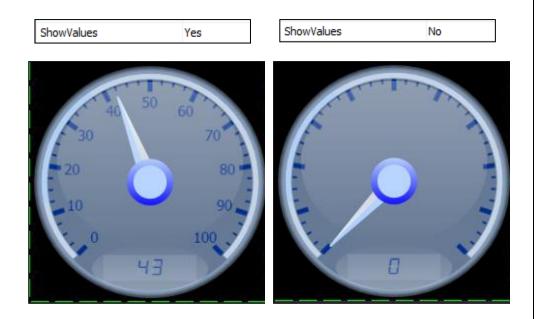
Maxvalue	100
Minvalue	0

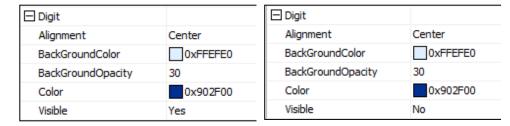
Just enter the new values.

Logarithmic Option

Linear and logarithmic scales are selectable, with the base for the later:

Logarithmic	No
LogarithmicBase	10
MaximumValue	100
MinimumValue	0


Logarithmic	Yes
LogarithmicBase	2
MaximumValue	10
MinimumValue	0



Display Options

The values on the dial can be displayed or hidden.

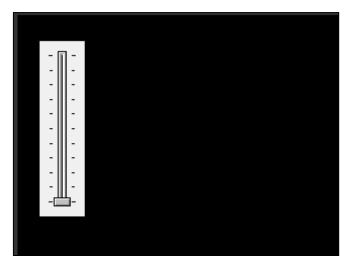
The same option exists for the digits:

Divisions Options

There are two kinds of divisions. Count, width and colour are selectable:

SubDivisionColor	0x902F00
SubDivisionCount	3
SubDivisionWidth	2

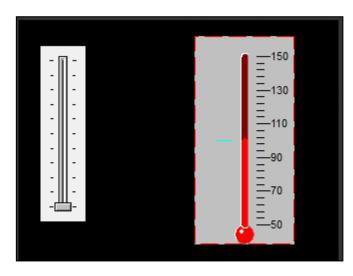
SubDivisionColor	0x902F00
SubDivisionCount	1
SubDivisionWidth	5

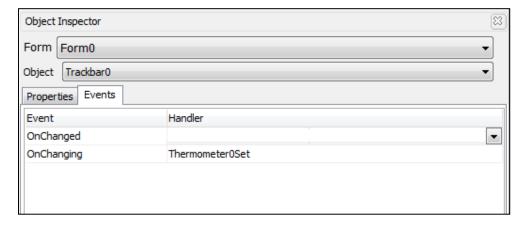

Thermometer Options

You can load the example...

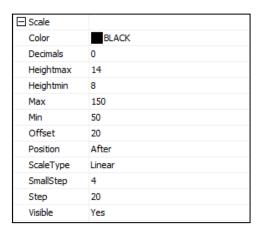
Example: 4D-AN-00008 PICASO — Thermometer or 4D-AN-00008 PICASO Thermometer

...or follow the procedures described hereafter.

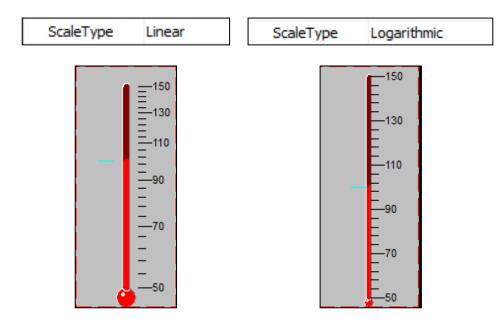

Delete the Cool Gauge object...


...add a Thermometer object...

...to the form...

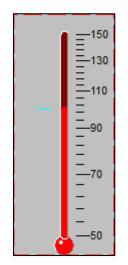


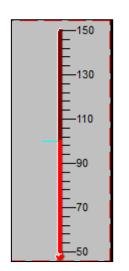
...and update the event **onChanging** for the **TrackBar0** as **Thermometer0Set**:

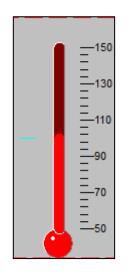


Scale Options

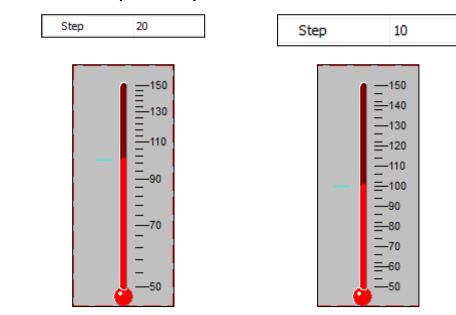
The options for **Scale** are under the line **Scale**:

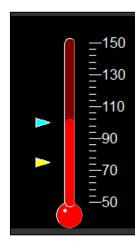



The scale can be set to linear or logarithmic:

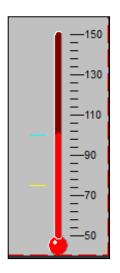


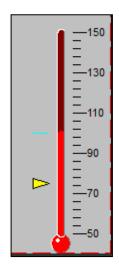
Offset can be adjusted, with 20 as default:


Offset 20 Offset 10 Offset 30



The size of the **step** can be adjusted:

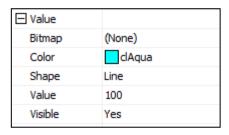

Combining different options produce this result:

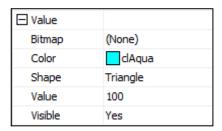


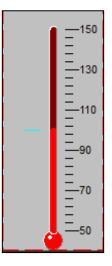
Here is the result with a yellow triangle:

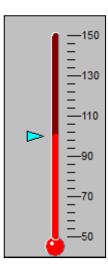
☐ Setpoint	
Bitmap	(None)
Color	YELLOW
Shape	Line
Value	75
Visible	Yes

☐ Setpoint	
Bitmap	(None)
Color	YELLOW
Shape	Triangle
Value	75
Visible	Yes






Value Options


Colour and shape can be changed, under the line Value:

Here is the result with an aqua triangle:

Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the target display, please refer to the section "Build and Upload the Project" of the application note

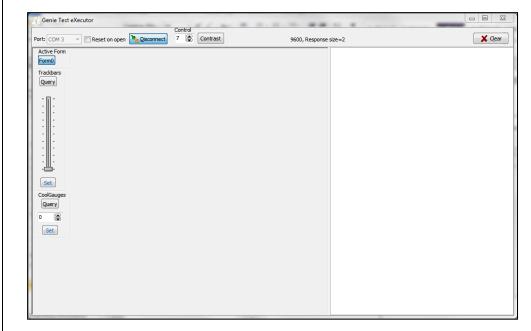
ViSi Genie Getting Started – First Project for Picaso
ViSi Genie Getting Started – First Project for Diablo16 Displays

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly used as examples, but the procedure is the same for other displays.

Debugger Output

Setting the handler to Message sends the values to the debugger, **Genie Test Executor** or GTX.

Launch the Debugger


To launch the **Genie Test Executor** or GTX, select the **Tools** menu...

...and then click on the GTX button.

A new screen appears, with the form and objects we have defined on the cool gauge example previously:

Use the Debugger

To set a value for the track-bar, move the slider...

...and then click on Set ... The screen module redraws the track-bar and the cool gauge with the new value.

The right part of the GTX window displays the command sent and the acknowledgement **06**:

Set Trackbar Value 14:25:38.295 [01 05 00 00 27 23] ACK 14:25:38.342 [06]

Reading the Value from the Cool Gauge

To read the value from the cool gauge, click on Query on top of the CoolGauges area:

The right part of the GTX window displays the command sent and the answer, here **0022**corresponding to 34 in decimal:

Request Coolgauge Value 14:28:08.402 [00 08 00 08] Coolgauge Value 14:28:08.433 [05 08 00 00 22 2F]

Setting the Value to the Cool Gauge

To set a value to the cool gauge, enter a value in the box, here 100...

...and click on Set. The cool gauge is updated on the screen module.

The right part of the GTX window displays the command sent with value 64 or 100 in decimal and the successful acknowledgement 06:

Set Coolgauge Value 14:29:32.655 [01 08 00 00 64 6D] ACK 14:29:32.764 [06]

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.