
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi-Genie Arduino Danger Shield

DOCUMENT DATE: 13th April 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00025

Page 2 of 31 www.4dsystems.com.au

 Description

This application note explains how to interface a 4D display module,

together with the Danger Shield, to an Arduino host. The demo in this

application note is based on this video from Sparkfun. The host is an AVR-

ATmega328-microcontroller-based Arduino Uno board. Ideally, the

application described in this document should work with any Arduino board

that is compatible with the Danger Shield and has at least one UART serial

port. See specifications of Aduino boards here.

Before getting started, the following are required:

 Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-28PTU uVGA-III
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

 The target module can also be a Diablo16 display

gen4-uLCD-24D
Series

gen4-uLCD-28D
Series

gen4-uLCD-32D
Series

gen4-uLCD-35D
Series

gen4-uLCD-43D
Series

gen4-uLCD-50D
Series

gen4-uLCD-70D
Series

uLCD-35DT uLCD-43D Series uLCD-70DT

See the section “Write to a Pin Output Object” when compiling this

project for a Diablo16 display module.

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

The display module used in this application note is the uLCD-32PTU,

which is a Picaso display. This application note is applicable to

Diablo16 display modules as well.

https://www.youtube.com/watch?feature=player_embedded&v=L1TPs6dI11k
http://arduino.cc/en/Products.Compare
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products

APPLICATION NOTES 4D-AN-00025

Page 3 of 31 www.4dsystems.com.au

 4D Programming Cable / µUSB-PA5/µUSB-PA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / gen4-Pa / 4D-UPA,

for gen-4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description.. 2

Content ... 3

Application Overview ... 4

Setup Procedure ... 6

Create a New Project .. 6

Create a New Project .. 6

Design the Application ... 7

Add a LED Digits Object .. 8

Naming of Objects ... 9

Add a User LED Object ... 10

Add a Gauge .. 12

Add a Track Bar ... 14

Add a 4D Button ... 15

Add a Strings Object .. 18

Add a Cool Gauge .. 18

Add a Background Image .. 20

Build and Upload the Project ... 23

Program the Arduino Host ... 23

Understanding the Demo Sketch ... 24

Reset the Arduino Host and the Display 24

Conflict in the Usage of Pins 25

https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00025

Page 4 of 31 www.4dsystems.com.au

Program Flow 25

Set Up the Project .. 29

The Complete Project .. 29

Proprietary Information ... 31

Disclaimer of Warranties & Limitation of Liability 31

 Application Overview

Danger Shield

Slider1 Slider2 Slider3

7 Segment

Display

Buzzer

Cap

sense

LED2

LED1

LDR

Temp

sensor

Button1 Button2 Button3

APPLICATION NOTES 4D-AN-00025

Page 5 of 31 www.4dsystems.com.au

4D uLCD-43PT display

The Danger Shield and the uLCD-43PT display are interfaced to the Arduino

host as shown below.

Danger Shield 4D uLCD-43PT display

Arduino Uno

In this application, the objects displayed on the uLCD-43PT will reflect the

status of the components on the Danger Shield. Also, since the uLCD-43PT

is a touch screen display, it also possible for it to control an output

Gauge0 Gauge1 Gauge2

Leddigits0

4Dbutton2

Leddigits1

Coolgauge0

4Dbutton0

4Dbutton1

User

led0

User

led1

User

led2

Strings0

Trackbar0

Leddigits2

Serial communication

Connection

thru GPIO pins

APPLICATION NOTES 4D-AN-00025

Page 6 of 31 www.4dsystems.com.au

component of the Danger Shield such as the buzzer and the two LEDs. This

two-way control is processed by the Arduino host. Together with the color-

coded images on page 4, the table below is presented to help the beginner

understand the application and the Arduino sketch. A change initiated by an

input triggers a change in an output.

Input – Danger Shield Output – uLCD-43PT

Slider1 Gauge0

Slider2 Gauge1

Slider3 Gauge2

Button1 Userled0

Button2 Userled1

Button3 Userled2

LDR Coolgauge0

Temperature Sensor Leddigits1

Cap sense Leddigits2

Input – uLCD-43PT Output – Danger Shield

4Dbutton0 LED1

4Dbutton1 LED2

4Dbutton2 Buzzer

Trackbar0* 7-segment display

*Trackbar0 controls Leddigits0 as well

The object Strings0 displays strings received from the Arduino host.

Users who want to learn more of how the Danger Shield works with the

Arduino host may visit www.sparkfun.com.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

Create a New Project

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

http://www.sparkfun.com/
http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00025

Page 7 of 31 www.4dsystems.com.au

Design the Application

Everything is now ready to start designing the project. Workshop 4 displays

an empty screen, called Form0. A form is like a page on the screen. It can

contain widgets or objects, like sliders, displays or keyboards. Below is an

empty form.

At the end of this section, the user will able to create a form with fifteen

objects. The final form will look like as shown below excluding the labels.

4D uLCD-43PT display

Leddigits0

4Dbutton2

Leddigits1

Coolgauge0

Gauge0 Gauge1 Gauge2

4Dbutton0

4Dbutton1

User

led0

User

led1

User

led2

Strings0

Trackbar0

Leddigits2

APPLICATION NOTES 4D-AN-00025

Page 8 of 31 www.4dsystems.com.au

Add a LED Digits Object

To add a LED digits object, go to the Digits pane and select the first icon.

Click on the WYSIWYG (What-You-See-Is-What-You-Get) screen to place a

LED digits object. The WYSIWYG screen simulates the actual appearance of

the display module screen.

The object can be dragged to any desired location and resized to the desired

dimensions. The Object Inspector on the right part of the screen displays all

the properties of the newly created LED digits object named Leddigits0.

Feel free to experiment with the different properties. To know more about

digital display objects, refer to ViSi-Genie Digital-Displays. Leddigits0 in this

example has the following properties.

http://www.4dsystems.com.au/appnote/4D-AN-00012/

APPLICATION NOTES 4D-AN-00025

Page 9 of 31 www.4dsystems.com.au

The object has a single digit and is positioned at the left side of the screen.

Naming of Objects

Naming is important to differentiate between objects of the same kind. For

instance, suppose the user adds another LED digits object to the WYSIWYG

screen. This object will be given the name Leddigits1 – it being the second

LED digits object in the project. The third LED digits object will be given the

name Leddigits2, and so on. An object’s name therefore identifies the

object’s kind and unique index number. It has an ID (or type) and an index.

Leddigits0

It is important to take note of an object’s ID and index. When programming

in the Arduino IDE, an object’s status can be polled or changed if its ID and

index are known.

The project has two more LED digits objects which have the following

properties.

third parameter is an integer which holds the data to be written to the

object. Example:

Object index
Object ID

APPLICATION NOTES 4D-AN-00025

Page 10 of 31 www.4dsystems.com.au

After having added the two LED digits objects, the form will look like as

shown below.

Add a User LED Object

To add a User LED, go to the Digits pane and select the User LED icon

Click on the WYSIWYG screen to place the object.

APPLICATION NOTES 4D-AN-00025

Page 11 of 31 www.4dsystems.com.au

Userled0 of this project has the following properties.

Add two more User LED objects with similar properties to the screen.

APPLICATION NOTES 4D-AN-00025

Page 12 of 31 www.4dsystems.com.au

Userled1 and Userled2 have the following properties.

Add a Gauge

To add a gauge object, go to the Gauges pane and click on the gauge icon to

select it.

Click on the WYSIWYG screen to place the object.

APPLICATION NOTES 4D-AN-00025

Page 13 of 31 www.4dsystems.com.au

In the Object Inspector, apply the following property values.

Add two more gauge objects to the screen. To know more about meters and

gauges, read ViSi-Genie Gauges.

http://www.4dsystems.com.au/appnote/4D-AN-00008/

APPLICATION NOTES 4D-AN-00025

Page 14 of 31 www.4dsystems.com.au

Gauge1 and Gauge2 have the following properties.

Add a Track Bar

To add a track bar object go to the Inputs pane and click on the track bar

icon.

Click on the WYSIWYG screen to add the object.

APPLICATION NOTES 4D-AN-00025

Page 15 of 31 www.4dsystems.com.au

The object can be dragged to any desired location and resized to the desired

dimensions. The track bar object used in this example has the following

properties.

Take note of the onChanging event property – it is set to “Report Message”.

With this configuration, the display will send a message to the Arduino host

when Trackbar0 is touched.

To know more about the OnChanged and OnChanging event properties,

read ViSi-Genie onChanging and onChanged Events. When done, the track

bar object will look like as shown below.

Add a 4D Button

To add a 4D button object, go to the Buttons pane and click on one of the

4D button icons. The fourth to eleventh icons are all 4D button objects.

Select the Toggle02 type.

http://www.4dsystems.com.au/appnote/4D-AN-00002/

APPLICATION NOTES 4D-AN-00025

Page 16 of 31 www.4dsystems.com.au

Click on the WYSIWYG screen to place the object.

4Dbutton0 of this project has the following properties.

Take note of the onChanged event property – it is set to “Report Message”.

With this configuration, the display will send a message to the Arduino host

when 4Dbutton0 is touched.

Add two more 4D button object to the screen. 4Dbutton1 of this project has

the following properties.

APPLICATION NOTES 4D-AN-00025

Page 17 of 31 www.4dsystems.com.au

4Dbutton2 has the following properties. Note that 4Dbutton2 is a Button01

type.

Similar to the DIP switch example, the code above displays the rocker

switch at state 0 and then at state 1.

Now there are three 4D button objects, each of which will report a message

to the host when touched.

APPLICATION NOTES 4D-AN-00025

Page 18 of 31 www.4dsystems.com.au

To know more about buttons, read the application notes ViSi-Genie User

Button, ViSi-Genie Animated Button, and ViSi-Genie 4D Buttons.

Add a Strings Object

To add a strings object, go to the Labels pane and click on the strings object

icon.

Click on the WYSIWYG screen to place the object.

The strings object used in this project has the following properties.

Add a Cool Gauge

To add a cool gauge object, go to the Gauges pane and click on the cool

gauge object icon.

http://www.4dsystems.com.au/appnotes/
http://www.4dsystems.com.au/appnotes/

APPLICATION NOTES 4D-AN-00025

Page 19 of 31 www.4dsystems.com.au

Click on the WYSIWYG screen to place the object.

The cool gauge object used in this project has the following properties. Open

the attached project to see the full list of property values. It is also possible

to copy the attached project’s Coolgague0 object by selecting it, pressing

Ctrl + C, and pressing Ctrl + V on the destination form.

APPLICATION NOTES 4D-AN-00025

Page 20 of 31 www.4dsystems.com.au

Add a Background Image

To add a background image, go to the Object inspector and select Form0 on

the drop-down list.

Set the property Bgtype to Image.

Click on the ellipsis dots of the Image line.

A standard Open window appears. Select the file to be used as a background

image. The background image for this demo is found inside the

“<demoFileName>.ImgData” folder.

APPLICATION NOTES 4D-AN-00025

Page 21 of 31 www.4dsystems.com.au

The Image + Video Converter window appears. To remove the white

background of the original image, crop the image by resizing the red box of

the input window.

The output image now looks better. Click OK.

APPLICATION NOTES 4D-AN-00025

Page 22 of 31 www.4dsystems.com.au

The code above will make Customdigits0 change its state from 0 to 99. To

learn how to create a custom digits object, open the ViSi sample program in

Workshop under File menu – Samples – Picaso ViSi – CLOCK. The block

comment discusses how the bitmap image of the digits was created.

The project is now complete. Reposition the objects if necessary.

APPLICATION NOTES 4D-AN-00025

Page 23 of 31 www.4dsystems.com.au

Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the

target display, please refer to the section “Build and Upload the Project” of

the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly

used as examples, but the procedure is the same for other displays.

Program the Arduino Host

A thorough understanding of the application note ViSi-Genie Connecting a

4D Display to an Arduino Host is required before attempting to proceed

further beyond this point. ViSi-Genie Connecting a 4D Display to an Arduino

Host provides all the basic information that a user needs to be able to get

started with ViSi-Genie and Arduino. The following is a list of the topics

discussed in ViSi-Genie Connecting a 4D Display to an Arduino Host.

 How to download and install the ViSi-Genie-Arduino library

 How to open a serial port for communicating with the display and

how to set the baud rate

 The genieAttachEventHandler() function

 How to reset the host and the display

 How to set the screen contrast

 How to send a text string

 The main loop

 Receiving data from the display

 The use of a non-blocking delay in the main loop

 How to change the status of an object

 How to know the status of an object

 The user’s event handler

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/

APPLICATION NOTES 4D-AN-00025

Page 24 of 31 www.4dsystems.com.au

Discussion of any of these topics is avoided in other ViSi-Genie-Arduino

application notes unless necessary. Users are encouraged to read ViSi-Genie

Connecting a 4D Display to an Arduino Host first.

For the CapSense library used with the Danger Shield, download the

example code from the Sparkfun product page. At the lower part of the page

click on the Example Code link.

The zip file contains the header and cpp files for the CapSense library. Install

the library.

It is recommended that the user first ensures that the Danger Shield is

working before interfacing it with a 4D display. For problems encountered

with the Danger Shield, refer to the Sparkfun website.

Understanding the Demo Sketch

Open the DangerShield_Demo sketch attached to this document. Note that

comments have been added to the code. Additional explanations are now

given below.

Reset the Arduino Host and the Display

To ensure that the display has properly started up before the Arduino host

starts sending commands, the routine below resets the display and waits for

five seconds for the display to boot up.

The program continues after the delay. Note that the reset routine above

applies only if the reset pin of the display is connected to pin A5 (or any

available GPIO) of the Arduino host using a one-kilo-ohm series resistor. The

case is different with the sketch presented in Connecting a 4D Display to an

Arduino Host, wherein the host uses either pin D2 or D4 to reset the display.

Pin D2 is for the old 4D Arduino Adaptor Shield (Rev 1) and pin D4 is for the

new 4D Arduino Adaptor Shield (Rev 2). Shown below is the reset routine

used in Connecting a 4D Display to an Arduino Host.

//reset the display

//unreset the display

http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
https://www.sparkfun.com/products/11649
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/

APPLICATION NOTES 4D-AN-00025

Page 25 of 31 www.4dsystems.com.au

The logic states for reset and unreset are reversed since the 4D Arduino

Adaptor Shields use switching transistors.

Conflict in the Usage of Pins

The first version of the 4D Arduino Adaptor Shield (Rev 1) uses pin D2 of the

Arduino for resetting the display. However, the Danger Shield also uses pin

D2 for the cap sense. As shown in the Sparkfun video, pin D2 of the 4D

Arduino Adaptor Shield (Rev 1) was bent down against the board to

disconnect it from the host. The host will therefore not reset the display

when the program starts. The user has the option of tapping the bent pin of

the 4D Arduino Adaptor Shield (Rev 1) to pin A5 of the host to make the

reset routine work. Use a 1 kilo-ohm series resistor for this.

The second version of the 4D Arduino Adaptor Shield (Rev 2) uses pin D4 of

the Arduino for resetting the display. However, the Danger Shield also uses

pin D4 for sending data to the shift register. To prevent conflict, remove the

connector of jumper J1 of the 4D Arduino Adaptor Shield (Rev 2) and tap the

centre pin to pin A5 of the Arduino host, with a one kilo-ohm series resistor

in between. This is shown in the next section “Set up the Project”.

If not using any of the 4D Arduino Adaptor Shields (Rev1 and Rev2) and if

using jumper wires instead, connect the reset pin of the display to pin A5

with a one kilo-ohm series resistor and use the same reset routine.

Program Flow

The following diagram illustrates the flow of the program for this demo.

APPLICATION NOTES 4D-AN-00025

Page 26 of 31 www.4dsystems.com.au

Setup

 Assignment of pins

 Declaration (and initialization) of variables

 Initialization of serial communication

 Reset routine

 Initialization of pin modes

dangerShield()

 read values from the temperature sensor, LDR, sliders, and buttons of the

Danger Shield

 send strings to the display to indicate the status of the Danger Shield

buttons

 update the seven segment display of the Danger Shield using the value of

the variable Digit.

 turn on or off the LEDS and the buzzer of the Danger Shield depending on

the values of variables Led1, Led2, and Beep.

ledUpdate()

 update the values of the gauges, LED digit objects, cool gauge, and user

LEDs of the display depending on the values read from the corresponding

components on the Danger Shield

capacitiveSense()

 acquire capacitive sensor reading from the Danger Shield and write the

value to Leddigits2 of the display

genieDoEvents()

 buffer messages from the display

 call on myGenieEventHandler() if there are messages

myGenieEventHandler()

setup

dangerShield()

ledUpdate()

capacitiveSense()

genieDoEvents()

myGenieEventHandler()

Main

loop

APPLICATION NOTES 4D-AN-00025

Page 27 of 31 www.4dsystems.com.au

 get a message from the buffer and evaluate it

 set the values of the variables Led1, Led2, Beep, and Digit and

print some strings to indicate the status of 4Dbutton0, 4Dbutton1,

4Dbutton2, and Trackbar0 of the display

What follows is a list of instructions performed in each of these four

subroutines - dangerShield(), ledUpdate(), capacitiveSense(), and

myGenieEventHandler(). Variable names are in bold font so as not to

be confused with the actual names of components of the Danger Shield and

objects on the 4D display.

dangerShield()

 read an analogue value from the temperature sensor. Read value is assigned

to the variable Temp.

 Temp is converted to the equivalent voltage reading Temp_mV using the 5V

AREF pin of the Arduino.

 Temp_mV is converted to the equivalent temperature reading in degrees

Celsius, TempC.

 TempC is converted to an integer, Temp.

 read an analogue value from the LDR. Read value is assigned to Light.

 read analogue values from Slider1, 2, and 3. Invert the values.

 inverted values are assigned to the variables Slider1, Slider2, and

Slider3.

 if there is a change in the value of Digit, update the seven segment display.

 read the state of Button1. Assign the value of the state to the variable

Button1. If there is a change in the value of Button1, send a string to

Strings0 indicating the current state of Button1.

 read the state of Button2. Assign the value of the state to the variable

Button2. If there is a change in the value of Button2, send a string to

Strings0 indicating the current state of Button2.

 read the state of Button3. Assign the value of the state to the variable

Button3. If there is a change in the value of Button3, send a string to

Strings0 indicating the current state of Button3.

 turn on or off LED1 (depending on the value of the variable Led1)

 turn on or off LED2 (depending on the value of the variable Led2)

 turn on or off the buzzer (depending on the value of the variable Beep)

ledUpdate()

 write to Gauge0, 1, and 2 the values of Slider1, 2, and 3, respectively.

 write to Leddigits0 the value of Digit

 write to Coolgauge0 the value of Light

 write to Leddigits1 the value of Temp

 turn on or off Userled0 (depending on the inverted value of Button1)

 turn on or off Userled1 (depending on the inverted value of Button2)

 turn on or off Userled2 (depending on the inverted value of Button3)

capacitiveSense ()

APPLICATION NOTES 4D-AN-00025

Page 28 of 31 www.4dsystems.com.au

 acquire capacitive sensor reading, constrain it to a certain range, and assign it

to the variable total.

 write to Leddigits2 the value of total.

myGenieEventHandler()

 get a message or an event from the buffer and evaluate it

 if the event is a REPORT EVENT from 4Dbutton0 (note that 4Dbutton0 was

configured to report a message when touched)

o get data* of the event and assign this to the variable Led1

o write a message to Strings0 indicating the status of 4Dbutton0

 if the event is a REPORT EVENT from 4Dbutton1 (note that 4Dbutton1was

configured to report a message when touched)

o get data* of the event and assign this to the variable Led2

o write a message to Strings0 indicating the status of 4Dbutton1

 if the event is a REPORT EVENT from 4Dbutton2 (note that 4Dbutton2 was

configured to report a message when touched)

o get data* of the event and assign this to the variable Beep

o write a message to Strings0 indicating the status of 4Dbutton2

 if the event is a REPORT EVENT from Trackbar0 (note that Trackbar0 was

configured to report a message when touched)

o get data* of the event and assign this to the variable Digit

*A complete message from the display contains six or more bytes. These bytes

represent the type of command or event, type of object, index of object,

parameters, and checksum. The “data” of a message is taken from its parameter

bytes. For two-state objects such as a DIP switch, the data is ‘0’ if it is off and ‘1’

if it is on. For multi-state objects such as a track bar having 100 states or frames,

the data can be an integer of any value from 0 to 99. Refer to the Visi-Genie

reference manual for more information.

http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00025

Page 29 of 31 www.4dsystems.com.au

Set Up the Project

Refer to the section “Connect the Display Module to the Arduino Host” of

the application note “ViSi-Genie Connecting a 4D Display to an Arduino

Host” for the following topics:

 Using the New 4D Arduino Adaptor Shield (Rev 2.00)

o Definition of Jumpers and Headers

o Default Jumper Settings

o Change the Arduino Host Serial Port

o Power the Arduino Host and the Display Separately

 Using the Old 4D Arduino Adaptor Shield (Rev 1)

 Connection Using Jumper Wires

 Changing the Serial port of the Genie Program

 Changing the Maximum String Length

The Complete Project

Reset line

Serial communication

thru a 5-way cable

The 4D Arduino Adaptor shield is

under the Danger Shield and on

top of the Arduino Uno

http://www.4dsystems.com.au/appnote/4D-AN-00017/
http://www.4dsystems.com.au/appnote/4D-AN-00017/

APPLICATION NOTES 4D-AN-00025

Page 30 of 31 www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00025

Page 31 of 31 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

