
ViSi-Genie Arduino Danger Shield

DOCUMENT DATE: DOCUMENT REVISION: 13th April 2019 1.1

Description

This application note explains how to interface a 4D display module, together with the Danger Shield, to an Arduino host. The demo in this application note is based on this video from Sparkfun. The host is an AVR-ATmega328-microcontroller-based Arduino Uno board. Ideally, the application described in this document should work with any Arduino board that is compatible with the Danger Shield and has at least one UART serial port. See specifications of Aduino boards here.

Before getting started, the following are required:

• Any of the following 4D Picaso display modules:

<u>uLCD-24PTU</u>	<u>uLCD-28PTU</u>	<u>uVGA-III</u>
gen4-uLCD-24PT	gen4-uLCD-28PT	gen4-uLCD-32PT

• The target module can also be a Diablo16 display

gen4-uLCD-24D	gen4-uLCD-28D	gen4-uLCD-32D
<u>Series</u>	<u>Series</u>	<u>Series</u>
gen4-uLCD-35D	gen4-uLCD-43D	gen4-uLCD-50D
<u>Series</u>	<u>Series</u>	<u>Series</u>
gen4-uLCD-70D		
<u>Series</u>		
<u>uLCD-35DT</u>	uLCD-43D Series	<u>uLCD-70DT</u>

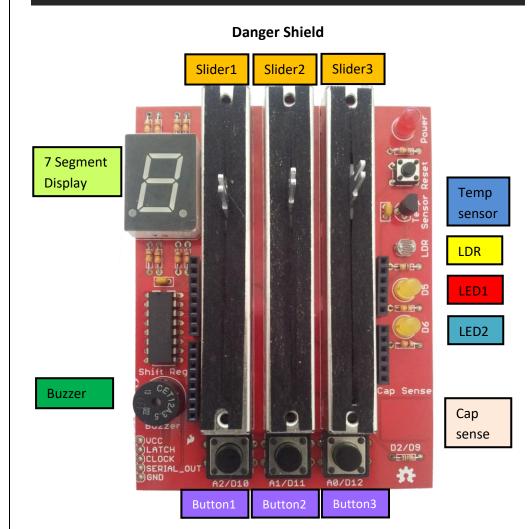
See the section "Write to a Pin Output Object" when compiling this project for a Diablo16 display module.

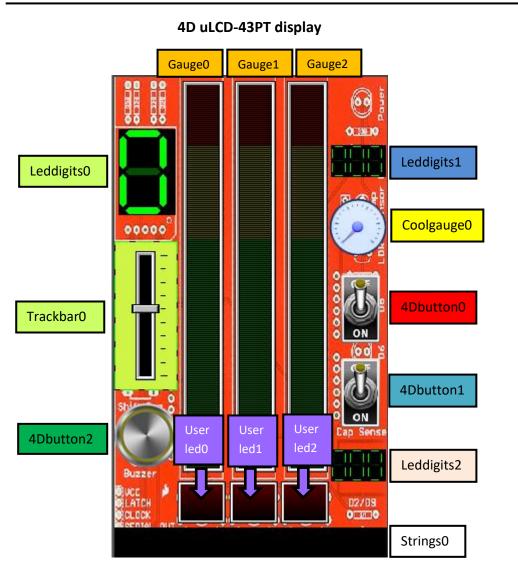
Visit <u>www.4dsystems.com.au/products</u> to see the latest display module products that use the Diablo16 processor.

The display module used in this application note is the uLCD-32PTU, which is a Picaso display. This application note is applicable to Diablo16 display modules as well.

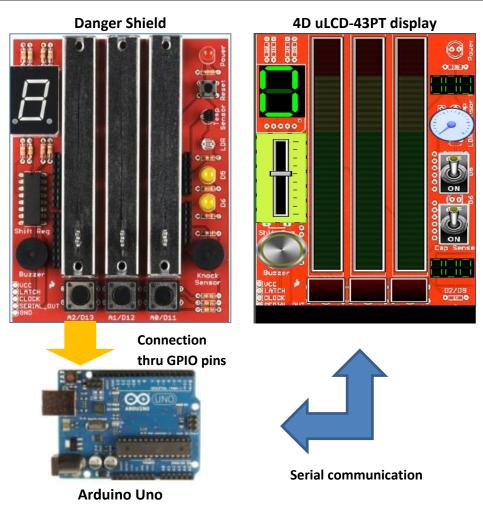
- <u>4D Programming Cable</u> / <u>μUSB-PA5/μUSB-PA5-II</u> for non-gen4 displays (uLCD-xxx)
- <u>4D Programming Cable</u> & <u>gen4-IB</u> / <u>gen4-Pa</u> / <u>4D-UPA</u>, for gen-4 displays (gen4-uLCD-xxx)
- micro-SD (µSD) memory card
- <u>Workshop 4 IDE</u> (installed according to the installation document)
- When downloading an application note, a list of recommended application notes is shown. It is assumed that the user has read or has a working knowledge of the topics presented in these recommended application notes.

Content


Description 2	2
Content	3
Application Overview	1
Setup Procedure	5
Create a New Project	5
Create a New Project	5
Design the Application	7
Add a LED Digits Object	3
Naming of Objects	9
Add a User LED Object)
Add a Gauge	2
Add a Track Bar14	1
Add a 4D Button	5
Add a Strings Object	3
Add a Cool Gauge	3
Add a Background Image)
Build and Upload the Project	3
Program the Arduino Host	3
Understanding the Demo Sketch	1
Reset the Arduino Host and the Display 24	1
Conflict in the Usage of Pins 25	5


APPLICATION NOTES

Program Flow	25
Set Up the Project	
The Complete Project	
Proprietary Information	
Disclaimer of Warranties & Limitation of Liability	


4D-AN-00025

Application Overview

The Danger Shield and the uLCD-43PT display are interfaced to the Arduino host as shown below.

In this application, the objects displayed on the uLCD-43PT will reflect the status of the components on the Danger Shield. Also, since the uLCD-43PT is a touch screen display, it also possible for it to control an output

component of the Danger Shield such as the buzzer and the two LEDs. This two-way control is processed by the Arduino host. Together with the colorcoded images on page 4, the table below is presented to help the beginner understand the application and the Arduino sketch. A change initiated by an input triggers a change in an output.

Input – Danger Shield	Output – uLCD-43PT
Slider1	Gauge0
Slider2	Gauge1
Slider3	Gauge2
Button1	Userled0
Button2	Userled1
Button3	Userled2
LDR	Coolgauge0
Temperature Sensor	Leddigits1
Cap sense	Leddigits2

Input – uLCD-43PT	Output – Danger Shield
4Dbutton0	LED1
4Dbutton1	LED2
4Dbutton2	Buzzer
Trackbar0*	7-segment display

*Trackbar0 controls Leddigits0 as well

The object Strings0 displays strings received from the Arduino host.

Users who want to learn more of how the Danger Shield works with the Arduino host may visit <u>www.sparkfun.com</u>.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie project, and how to change the target display, kindly refer to the section "**Setup Procedure**" of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso) or ViSi Genie Getting Started – First Project for Diablo16 Displays (for Diablo16).

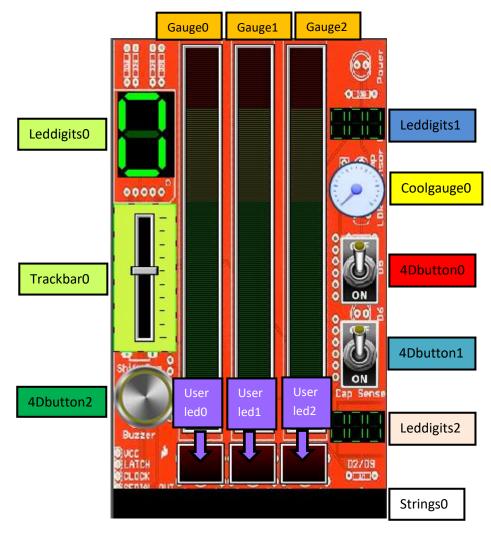
Create a New Project

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to the section "**Create a New Project**" of the application note

<u>ViSi Genie Getting Started – First Project for Picaso Displays</u> (for Picaso) or

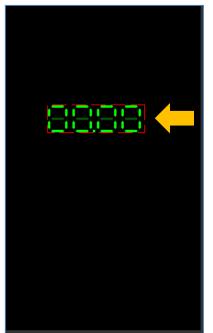
<u>ViSi Genie Getting Started – First Project for Diablo16 Displays</u> (for Diablo16).


Design the Application

Everything is now ready to start designing the project. **Workshop 4** displays an empty screen, called **Form0**. A **form** is like a page on the screen. It can contain **widgets** or **objects**, like sliders, displays or keyboards. Below is an empty form.

New Open Save	w Tools Comms Pr		VoName2(uLCl		Inputs	Labels	System/Media	\$
File ArduinoVoltmeter 2	Build	S NoName2	×					4 Þ
Form0		8	Object Inspect	0				* *
		1	Properties E Property Name Bgtype Color Image ⊞ Source	Vents Value Form0 Color BLACK (None)				

At the end of this section, the user will able to create a form with fifteen objects. The final form will look like as shown below excluding the labels.



Add a LED Digits Object

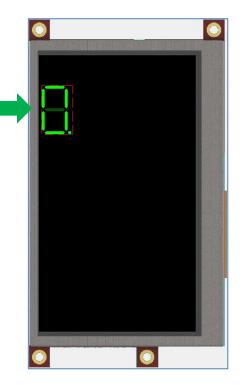
To add a LED digits object, go to the **Digits** pane and select the first icon.

Buttons	Digits	Gauges	Primitives	Inputs	Labels	System/Media	
00	00		I				

Click on the **WYSIWYG** (What-You-See-Is-What-You-Get) screen to place a LED digits object. The WYSIWYG screen simulates the actual appearance of the display module screen.

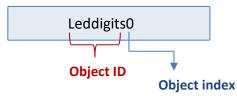
The object can be dragged to any desired location and resized to the desired dimensions. The **Object Inspector** on the right part of the screen displays all the properties of the newly created LED digits object named **Leddigits0**.

Object Inspector			
Form Form0	~		
Object Leddigits	D ~		
Properties Events			
Property	Value		
Name	Leddigits0		
Color	BLACK		
Decimals	2		


Digits	4
Height	35
LeadingZero	Yes
Left	36
OutlineColor	BLACK
🛨 Palette	
Тор	84
Visible	Yes
Width	120

Feel free to experiment with the different properties. To know more about digital display objects, refer to <u>ViSi-Genie Digital-Displays</u>. Leddigits0 in this example has the following properties.

APPLICATION NOTES

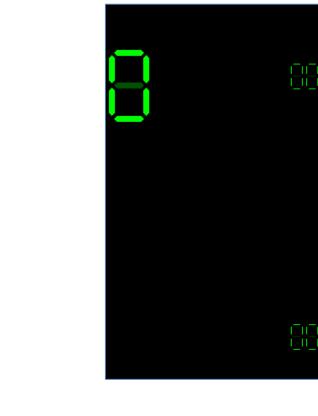

ect Inspecto	r	8	Digits	1
orm Form0		~	Height	86
		-	LeadingZero	Yes
ect Leddigi	ts0	~	Left	4
operties Ev	ents		OutlineColor	BLACK
operty	Value		🛨 Palette	
ne	Leddigits0		Тор	52
lor	BLACK		Visible	Yes
cimals	0		Width	57

The object has a single digit and is positioned at the left side of the screen.

Naming of Objects

Naming is important to differentiate between objects of the same kind. For instance, suppose the user adds another LED digits object to the WYSIWYG screen. This object will be given the name Leddigits1 – it being the second LED digits object in the project. The third LED digits object will be given the name Leddigits2, and so on. An object's name therefore identifies the object's kind and unique index number. It has an ID (or type) and an index.

It is important to take note of an object's ID and index. When programming in the Arduino IDE, an object's status can be polled or changed if its ID and index are known.

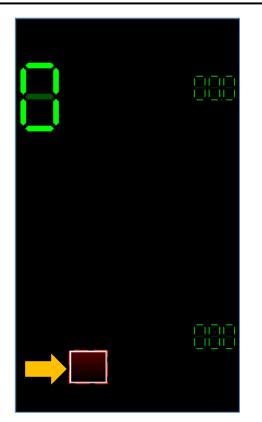

The project has two more LED digits objects which have the following properties.

third parameter is an integer which holds the data to be written to the object. Example:

APPLICATION NOTES

Object Inspector	Digits 3
Form Form0 V	Height 32
	LeadingZero Yes
Object Leddigits1 V	Left 216
Properties Events	OutlineColor BLACK
Property Value	1 Palette
Name Leddigits1	Top 68
Color BLACK	Visible Yes
Decimals 1	Width 55
Object Inspector	Digits 3
Form Form0 V	Height 32
	LeadingZero Yes
Object Leddigits2 V	Left 216
Properties Events	OutlineColor BLACK
Property Value	1 Palette
Name Leddigits2	Top 372
Color BLACK	Visible Yes
Decimals 0	Width 55

After having added the two LED digits objects, the form will look like as shown below.



Add a User LED Object

To add a User LED, go to the Digits pane and select the User LED icon

Backgrou	nds	Buttons	Digits	
00	00	Led		
00	~~	-	_	

Click on the WYSIWYG screen to place the object.

Userled0 of this project has the following properties.

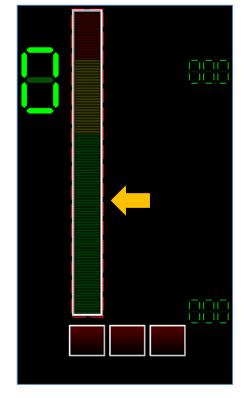
Object Inspe	ctor	8	Left	64
			OutlineColor	BLACK
Form Form()	~	OutlineWidth	0
Object Userle	d0	~	PaletteEx	
Dunner Kan a			High 1	dRed
Properties E	/ents		High2	BLACK
Property	Value		Low1	0x000051
Name	Userled0		Low2	BLACK
Active	No		Тор	404
🛨 Bevel			Visible	Yes
Height	42		Width	48

Add two more User LED objects with similar properties to the screen.

Userled1 and Userled2 have the following properties.

Object Inspector	8
Form Form0	~
Object Userled1	. 🗸
Properties Ever	nts
Property	Value
Name	Userled 1
Active	No
🛨 Bevel	
Height	42

Left	115
OutlineColor	BLACK
OutlineWidth	0
PaletteEx	
High 1	dRed
High2	BLACK
Low1	0x000051
Low2	BLACK
Тор	404
Visible	Yes
Width	48

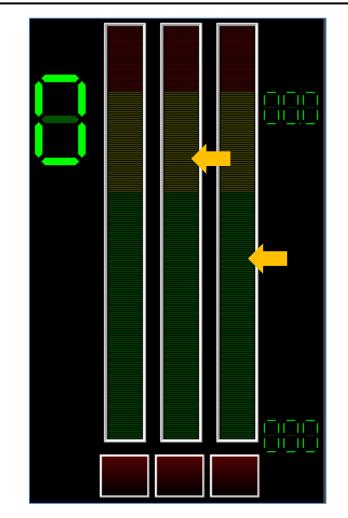

Object Inspector	8	L	.eft	166
Form Forme		(DutlineColor	BLACK
Form Form0	~	0	DutlineWidth	0
Object Userled2	2 4	E	PaletteEx	
Properties Ever	ate		High 1	dRed
			High2	BLACK
Property	Value		Low1	0x000051
Name	Userled2		Low2	BLACK
Active	No	1	Гор	404
🛨 Bevel		1	/isible	Yes
Height	42		Width	48

Add a Gauge

To add a gauge object, go to the **Gauges** pane and click on the gauge icon to select it.

• •						
	Backgrounds	Buttons	Digits	Gauges	1/0 1	Inputs L
		\bigcirc				

Click on the WYSIWYG screen to place the object.



In the Object Inspector, apply the following property values.

Object Inspecto	or 🙁
Form Form0	¥
Object Gauge	0 🗸
Properties Ev	/ents
Property	Value
Name	Gauge0
Analogue	(None)
🛨 Bevel	
Color	BLACK
Height	392
Interval	100
Left	68
Maxvalue	1024
Minvalue	0

Orientation	Vertical
🛨 Palette 1	
🛨 Palette2	
Palette3	
Percent1	60
Percent2	25
Spacing	1
Step	10
Style	BottomLeft
TickHeight	1
Timer	(None)
Тор	4
Visible	Yes
Width	41

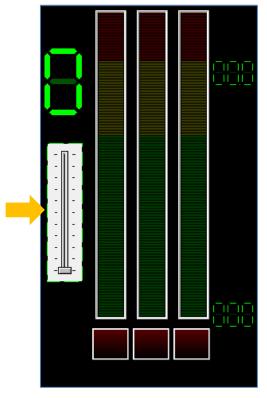
Add two more gauge objects to the screen. To know more about meters and gauges, read <u>ViSi-Genie Gauges</u>.

Gauge1 and Gauge2 have the following properties.

Object Inspector	[23]
Form Form0	~
Object Gauge1	~
Properties Even	its
Property	Value
Name	Gauge1
Analogue	(None)
🛨 Bevel	
Color	BLACK
Height	391
Interval	100
Left	120
Maxvalue	1024
Minvalue	0

Orientation	Vertical
🛨 Palette 1	
🛨 Palette2	
Percent1	60
Percent2	25
Spacing	1
Step	10
Style	BottomLeft
TickHeight	1
Timer	(None)
Тор	4
Visible	Yes
Width	41

Object Inspect	or 🙁
Form Form0	~
Object Gauge2	~
Properties Ever	nts
Property	Value
Name	Gauge2
Analogue	(None)
🛨 Bevel	
Color	BLACK
Height	391
Interval	100
Left	172
Maxvalue	1024
Minvalue	0


Orientation	Vertical	
🛨 Palette 1		
Percent1	60	
Percent2	25	
Spacing	1	
Step	10	
Style	BottomLeft	
TickHeight	1	
Timer	(None)	
Тор	4	
Visible	Yes	
Width	41	

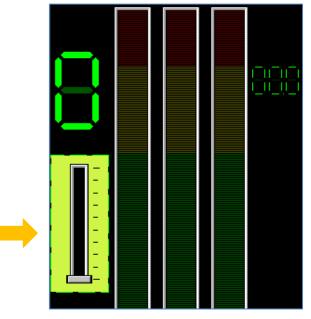
Add a Track Bar

To add a track bar object go to the Inputs pane and click on the track bar icon.

Backgrounds Bu	ttons Digits	Gauges	I/0	Inputs
$igodoldsymbol{\circ}$	-		•	~

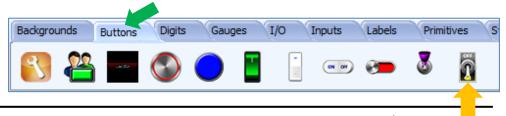
Click on the WYSIWYG screen to add the object.

The object can be dragged to any desired location and resized to the desired dimensions. The track bar object used in this example has the following properties.

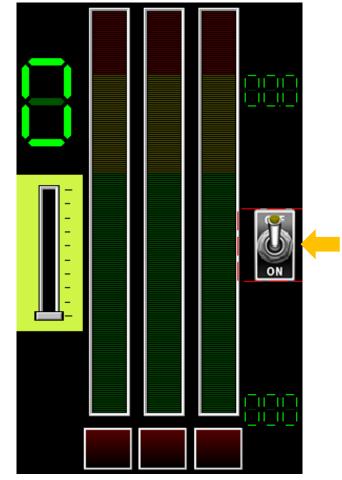

Object Inspector		83	GutterColo
			GutterWidt
Form Form0		×	Height
Object Trackba	rΩ	~	Left
Object Hackba		·	Maxvalue
Properties Eve	nts		Minvalue
Property	Value		Orientation
Name	Trackbar0		ScaleOffse
BorderWidth	10		TickColor
			TickMarks
Color	0x46F6CF		Тор
Frequency	1		Visible
🗄 GutterBevel			Width

GutterColor	BLACK
GutterWidth	20
Height	149
Left	0
Maxvalue	9
Minvalue	0
Orientation	Vertical
ScaleOffset	5
TickColor	BLACK
TickMarks	BottomRight
Тор	164
Visible	Yes
Width	63

Take note of the **onChanging** event property – it is set to "**Report Message**". With this configuration, the display will send a message to the Arduino host when Trackbar0 is touched.


Object Inspector	8
Form Form0	~
Object Trackbar0	×
Properties Events	
Event	Handler
OnChanged	
OnChanging	Report Message

To know more about the OnChanged and OnChanging event properties, read <u>ViSi-Genie onChanging and onChanged Events</u>. When done, the track bar object will look like as shown below.



Add a 4D Button

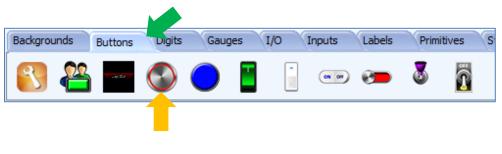
To add a 4D button object, go to the **Buttons** pane and click on one of the 4D button icons. The fourth to eleventh icons are all 4D button objects. Select the Toggle02 type.

Click on the WYSIWYG screen to place the object.

4Dbutton0 of this project has the following properties.

Object Inspector	8	Left	210
Form Form0	~	Matrix	-1
		Momentar	y No
Object 4Dbuttor	n0 🗸	Size	64x64
Properties Even	ts	Style	Yellow_r
Property	Value	Тор	196
Name	4Dbutton0	Туре	Toggle02
Height	70	Width	70

Take note of the **onChanged** event property – it is set to "**Report Message**". With this configuration, the display will send a message to the Arduino host when 4Dbutton0 is touched.

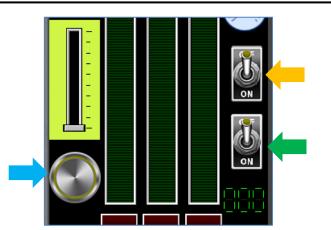

Object Inspector	8
Form Form0	~
Object 4Dbutton0	~
Properties Events	
Event	Handler
OnChanged	Report Message

Add two more 4D button object to the screen. **4Dbutton1** of this project has the following properties.

Object Inspecto	or 🔯	Left	210
Form Form0	~	Matrix	-1
		Momentary	No
Object 4Dbut	ton1 🗸	Size	Scaled
Properties Ev	ents	Style	Yellow_r
Property	Value	Тор	280
Name	4Dbutton 1	Туре	Toggle02
Height	70	Width	70

Object Inspector				
Form Form0 v				
Object 4Dbutton 1				
Properties Events				
Event	Handler			
OnChanged Report Message				

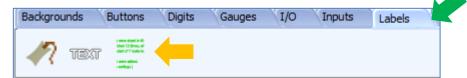
4Dbutton2 has the following properties. Note that 4Dbutton2 is a Button01 type.



Similar to the DIP switch example, the code above displays the rocker switch at state 0 and then at state 1.

Object Inspect	or	8		Left	0
Form Form		~		Matrix	-1
		_		Momentary	Both
Object 4Dbut	ton2	~		Size	64x64
Properties Ev	vents			Style	Yellow
Property	Value			Тор	328
Name	4Dbutton2	4Dbutton2		Туре	Button01
Height	64	64		Width	64

Object Inspector			
Form	Form Form0 V		
Object	4Dbu	utton2	~
Properties Events			
Event		Handler	
OnChanged		Report Message	•••

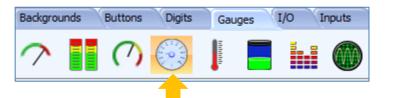

Now there are three 4D button objects, each of which will report a message to the host when touched.

To know more about buttons, read <u>the application notes ViSi-Genie User</u> <u>Button, ViSi-Genie Animated Button, and ViSi-Genie 4D Buttons</u>.

Add a Strings Object

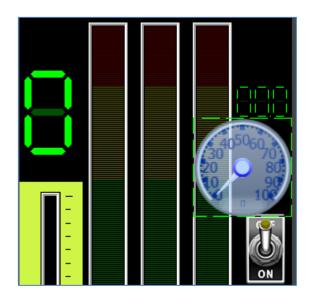
To add a strings object, go to the Labels pane and click on the strings object icon.

Click on the WYSIWYG screen to place the object.


The strings object used in this project has the following properties.

Object Inspecto	r 🖾	Height	30
Form Form0	~	FGcolor	WHITE
Ohiosh Ohioso	• •	🗄 Font	
Object Strings	0 ~	Left	0
Properties Ev	ents	Strings	
Property	Value	StringsStyle	Message
Name	Strings0	Тор	450
Alignment	Left	Visible	Yes
BGcolor	BLACK	Width	272

Add a Cool Gauge


To add a cool gauge object, go to the Gauges pane and click on the cool gauge object icon.

Click on the WYSIWYG screen to place the object.

The cool gauge object used in this project has the following properties. Open the attached project to see the full list of property values. It is also possible to copy the attached project's Coolgague0 object by selecting it, pressing **Ctrl + C**, and pressing **Ctrl + V** on the destination form.

Object Inspector					
Form Form0	Form Form0 v				
Object Coolgau	geO 🗸 🗸				
Properties Ever	nts				
Property	Value				
Name	Coolgauge0				
Analogue	(None)				
🗄 Arc					
CircleEndValue	360				
CircleStartValue	0				
DialText					
🛨 Digit					
DivisionColor	0x902F00				
DivisionCount	5				
DivisionWidth	1				
EqualDimensions	Yes				
E Font	(0x902F00, [], Tahoma, 14, [])				
Height	59				

🛨 Innercircle	
Left	213
Logarithmic	No
LogarithmicBase	10
MaximumValue	100
MinimumValue	0
🛨 Needle	
🕀 OuterCircle	
⊕ OuterRim	
ShowValues	No
SubDivisionColor	0x902F00
SubDivisionCount	0
SubDivisionWidth	1
TextRendering	ClearType
Timer	(None)
Тор	120
H ValueFont	(0x902F00, [], Tahoma, 11, [])
ValueFormat	0
Visible	Yes
Width	59

Add a Background Image

To add a background image, go to the Object inspector and select Form0 on the drop-down list.

Object	Inspector	8
Form	Form0	~
Object	Leddigits0	~
	Dipswitch0 Form0	
Proper	Gauge0 Gauge1	
Name		
Color	Gauge3 Gauge4	
Decima	Led0	
Digits	Led1 Led2	
Height	Leddigits0	
Leadin	Rockerswitch0	
Left	Rockerswitch1 Strings0	

Set the property **Bgtype** to **Image**.

Object Inspector	83	
Form Form0	~	
Object Form0		~
Properties Eve	ents	
Property	Value	
Name	Form0	
Bgtype	Color	~
Color	Image	
Image	Color (None)	
E Source		

Click on the ellipsis dots of the Image line.

Object Inspecto	r	8
Form Form0		~
bject Form0		~
Properties Ev	ents	
Property	Value	
Name	Form0	
Bgtype	Image	
Color	BLACK	
Image	(None)	•••
1 Source		

A standard Open window appears. Select the file to be used as a background image. The background image for this demo is found inside the "<demoFileName>.**ImgData**" folder.

APPLICATION NOTES

\$	Open			×
€ ∋ - ↑	u-Demo\DangerShield-Demo.ImgDa		Search DangerShield-Demo.l	ð
Organize 💌	New folder			0
ᠾ Download 🗐 Recent pla 🍄 Dropbox 省 SkyDrive		^		
📃 Desktop			DangerShield.jpg	
🥞 Libraries				
📑 Docume	nts			
a) Music				
📔 Pictures		\checkmark		
	File name:		V Images (*.jpg;*.bmp;*.wmf;*.ic Open Cancel	

The Image + Video Converter window appears. To remove the white background of the original image, crop the image by resizing the red box of the input window.

				Imag
	p, left) 8, 3 idth, heigh	it) 176, 230 🛛 🗖		
D GOMON (1910 \$10 \$	00000000000000000000000000000000000000	canger Bhiold canger Bhiold osees cosees	me gine sup sup sup sup sup sup sup sup sup sup	
I O Beac Beac Beac Beac Beac Beac				
Position		T: 0.00.00 0		Image
Position Frame 0		Time: 0:00:00.0	100	Image Scaled
Frame 0				Scaled
Frame 0	Window in	- Input	- 10 - 10 - 1	Scaled
Frame 0	86	i Input Top	p: 20	Scaled
Frame 0 Selection ¹ Left: Width:	86	Input Top	- 10 - 10 - 1	Scaled
Frame 0 Selection ¹ Left:	86 E	i Input Top	p: 20	Scaled

The output image now looks better. Click OK.

2 3m	•≃•. 8@1			
Image Scaled Output Width	12-122 72.202 🖗	Height:	480	

The code above will make CustomdigitsO change its state from 0 to 99. To learn how to create a custom digits object, open the ViSi sample program in Workshop under File menu – Samples – Picaso ViSi – CLOCK. The block comment discusses how the bitmap image of the digits was created.

The project is now complete. Reposition the objects if necessary.

Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the target display, please refer to the section "**Build and Upload the Project**" of the application note

<u>ViSi Genie Getting Started – First Project for Picaso Displays</u> (for Picaso) or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly used as examples, but the procedure is the same for other displays.

Program the Arduino Host

A thorough understanding of the application note <u>ViSi-Genie Connecting a</u> <u>4D Display to an Arduino Host</u> is required before attempting to proceed further beyond this point. <u>ViSi-Genie Connecting a 4D Display to an Arduino</u> <u>Host</u> provides all the basic information that a user needs to be able to get started with ViSi-Genie and Arduino. The following is a list of the topics discussed in <u>ViSi-Genie Connecting a 4D Display to an Arduino Host</u>.

- How to download and install the ViSi-Genie-Arduino library
- How to open a serial port for communicating with the display and how to set the baud rate
- The genieAttachEventHandler() function
- How to reset the host and the display
- How to set the screen contrast
- How to send a text string
- The main loop
- Receiving data from the display
- The use of a non-blocking delay in the main loop
- How to change the status of an object
- How to know the status of an object
- The user's event handler

Discussion of any of these topics is avoided in other ViSi-Genie-Arduino application notes unless necessary. Users are encouraged to read <u>ViSi-Genie</u> <u>Connecting a 4D Display to an Arduino Host</u> first.

For the CapSense library used with the Danger Shield, download the example code from the Sparkfun <u>product page</u>. At the lower part of the page click on the Example Code link.

The zip file contains the header and cpp files for the CapSense library. Install the library.

File folder

Danger_shield_V16_CapSense

It is recommended that the user first ensures that the Danger Shield is working before interfacing it with a 4D display. For problems encountered with the Danger Shield, refer to the Sparkfun website.

Understanding the Demo Sketch

Open the **DangerShield_Demo** sketch attached to this document. Note that comments have been added to the code. Additional explanations are now given below.

Reset the Arduino Host and the Display

To ensure that the display has properly started up before the Arduino host starts sending commands, the routine below resets the display and waits for five seconds for the display to boot up.

pinMode (A5,	OUTPUT);	
digitalWrite	(A5, LOW); //reset the display	
<pre>delay(100);</pre>		
digitalWrite	(A5, HIGH);//unreset the display	
<pre>delay(5000);</pre>		

The program continues after the delay. Note that the reset routine above applies only if the reset pin of the display is connected to pin A5 (or any available GPIO) of the Arduino host using a one-kilo-ohm series resistor. The case is different with the sketch presented in <u>Connecting a 4D Display to an</u> <u>Arduino Host</u>, wherein the host uses either pin D2 or D4 to reset the display. Pin D2 is for the old 4D Arduino Adaptor Shield (Rev 1) and pin D4 is for the new 4D Arduino Adaptor Shield (Rev 2). Shown below is the reset routine used in <u>Connecting a 4D Display to an Arduino Host</u>.

//Reset the Display (change D4 to D2 if you have ori pinMode(4, OUTPUT); // Set D4 on Arduino to Output digitalWrite(4, 1); // Reset the Display via D4 delay(100); digitalWrite(4, 0); // unReset the Display via D4

The logic states for reset and unreset are reversed since the 4D Arduino Adaptor Shields use switching transistors.

Conflict in the Usage of Pins


The first version of the 4D Arduino Adaptor Shield (Rev 1) uses pin D2 of the Arduino for resetting the display. However, the Danger Shield also uses pin D2 for the cap sense. As shown in the Sparkfun video, pin D2 of the 4D Arduino Adaptor Shield (Rev 1) was bent down against the board to disconnect it from the host. The host will therefore not reset the display when the program starts. The user has the option of tapping the bent pin of the 4D Arduino Adaptor Shield (Rev 1) to pin A5 of the host to make the reset routine work. Use a 1 kilo-ohm series resistor for this.

The second version of the 4D Arduino Adaptor Shield (Rev 2) uses pin D4 of the Arduino for resetting the display. However, the Danger Shield also uses pin D4 for sending data to the shift register. To prevent conflict, remove the connector of jumper J1 of the 4D Arduino Adaptor Shield (Rev 2) and tap the centre pin to pin A5 of the Arduino host, with a one kilo-ohm series resistor in between. This is shown in the next section "Set up the Project".

If not using any of the 4D Arduino Adaptor Shields (Rev1 and Rev2) and if using jumper wires instead, connect the reset pin of the display to pin A5 with a one kilo-ohm series resistor and use the same reset routine.

Program Flow

The following diagram illustrates the flow of the program for this demo.

- Assignment of pins
- Declaration (and initialization) of variables
- Initialization of serial communication
- Reset routine
- Initialization of pin modes

dangerShield()

- read values from the temperature sensor, LDR, sliders, and buttons of the Danger Shield
- send strings to the display to indicate the status of the Danger Shield buttons
- update the seven segment display of the Danger Shield using the value of the variable **Digit**.
- turn on or off the LEDS and the buzzer of the Danger Shield depending on the values of variables **Led1**, **Led2**, and **Beep**.

ledUpdate()

• update the values of the gauges, LED digit objects, cool gauge, and user LEDs of the display depending on the values read from the corresponding components on the Danger Shield

capacitiveSense()

• acquire capacitive sensor reading from the Danger Shield and write the value to Leddigits2 of the display

genieDoEvents()

- buffer messages from the display
- call on myGenieEventHandler() if there are messages

myGenieEventHandler()

- get a message from the buffer and evaluate it
- set the values of the variables Led1, Led2, Beep, and Digit and print some strings to indicate the status of 4Dbutton0, 4Dbutton1, 4Dbutton2, and Trackbar0 of the display

What follows is a list of instructions performed in each of these four subroutines - dangerShield(), ledUpdate(), capacitiveSense(), and myGenieEventHandler(). Variable names are in **bold font** so as not to be confused with the actual names of components of the Danger Shield and objects on the 4D display.

dangerShield()

- read an analogue value from the temperature sensor. Read value is assigned to the variable **Temp**.
- **Temp** is converted to the equivalent voltage reading **Temp_mV** using the 5V AREF pin of the Arduino.
- **Temp_mV** is converted to the equivalent temperature reading in degrees Celsius, **TempC**.
- **TempC** is converted to an integer, **Temp**.
- read an analogue value from the LDR. Read value is assigned to Light.
- read analogue values from Slider1, 2, and 3. Invert the values.
- inverted values are assigned to the variables Slider1, Slider2, and Slider3.

- read the state of Button1. Assign the value of the state to the variable
 Button1. If there is a change in the value of Button1, send a string to
 Strings0 indicating the current state of Button1.
- read the state of Button2. Assign the value of the state to the variable Button2. If there is a change in the value of Button2, send a string to Strings0 indicating the current state of Button2.
- read the state of Button3. Assign the value of the state to the variable Button3. If there is a change in the value of Button3, send a string to Strings0 indicating the current state of Button3.
- turn on or off LED1 (depending on the value of the variable **Led1**)
- turn on or off LED2 (depending on the value of the variable **Led2**)
- turn on or off the buzzer (depending on the value of the variable **Beep**)

ledUpdate()

- write to Gauge0, 1, and 2 the values of **Slider1**, **2**, and **3**, respectively.
- write to LeddigitsO the value of Digit
- write to CoolgaugeO the value of Light
- write to Leddigits1 the value of **Temp**
- turn on or off Userled0 (depending on the inverted value of **Button1**)
- turn on or off Userled1 (depending on the inverted value of **Button2**)
- turn on or off Userled2 (depending on the inverted value of **Button3**)

• if there is a change in the value of **Digit**, update the seven segment display.

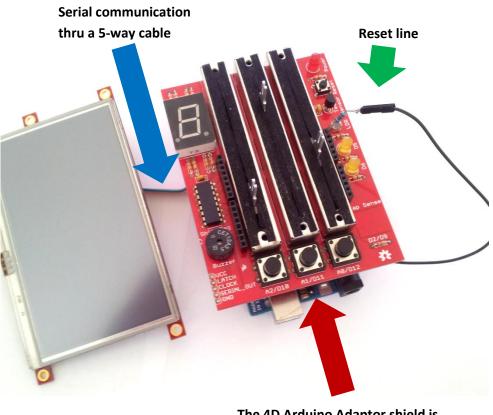
capacitiveSense ()

APPLICATION NOTES

- acquire capacitive sensor reading, constrain it to a certain range, and assign it to the variable total.
- write to Leddigits2 the value of total.

myGenieEventHandler()

- get a message or an event from the buffer and evaluate it
- if the event is a REPORT EVENT from 4Dbutton0 (note that 4Dbutton0 was configured to report a message when touched)
 - get data* of the event and assign this to the variable Led1
 - write a message to Strings0 indicating the status of 4Dbutton0
- if the event is a REPORT EVENT from 4Dbutton1 (note that 4Dbutton1was configured to report a message when touched)
 - get data* of the event and assign this to the variable Led2
 - write a message to Strings0 indicating the status of 4Dbutton1
- if the event is a REPORT EVENT from 4Dbutton2 (note that 4Dbutton2 was configured to report a message when touched)
 - get data* of the event and assign this to the variable **Beep**
 - write a message to Strings0 indicating the status of 4Dbutton2
- if the event is a REPORT EVENT from Trackbar0 (note that Trackbar0 was configured to report a message when touched)
 - get data* of the event and assign this to the variable Digit


*A complete message from the display contains six or more bytes. These bytes represent the type of command or event, type of object, index of object, parameters, and checksum. The "data" of a message is taken from its parameter bytes. For two-state objects such as a DIP switch, the data is '0' if it is off and '1' if it is on. For multi-state objects such as a track bar having 100 states or frames, the data can be an integer of any value from 0 to 99. Refer to the <u>Visi-Genie</u> <u>reference manual</u> for more information.

Set Up the Project

Refer to the section "**Connect the Display Module to the Arduino Host**" of the application note "<u>ViSi-Genie Connecting a 4D Display to an Arduino</u> <u>Host</u>" for the following topics:

- Using the New 4D Arduino Adaptor Shield (Rev 2.00)
 - o Definition of Jumpers and Headers
 - Default Jumper Settings
 - Change the Arduino Host Serial Port
 - Power the Arduino Host and the Display Separately
- Using the Old 4D Arduino Adaptor Shield (Rev 1)
- Connection Using Jumper Wires
- Changing the Serial port of the Genie Program
- Changing the Maximum String Length

The Complete Project

The 4D Arduino Adaptor shield is under the Danger Shield and on top of the Arduino Uno

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.

4D-AN-00025