
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

Designer or ViSi GPIO Pins Picaso

DOCUMENT DATE: 12th APRIL 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00057

Page 2 of 12 www.4dsystems.com.au

 Description

This application note shows how to configure and use the GPIO pins of a

Picaso display module. The 4DGL code of the Designer project can be copied

and pasted to an empty ViSi project and it will compile normally. The code

can also be integrated to that of an existing ViSi project.

Before getting started, the following are required:

 Any of the following 4D Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

uLCD-24PTU uLCD-32PTU uVGA-III

and other superseded modules which support the Designer

and/or ViSi environments.

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

for non-gen4 displays(uLCD-xxx)

 4D Programming Cable & gen4-PA, / gen4-IB / 4D-UPA

for gen4 displays (gen4-uLCD-xxx)

 Workshop 4 IDE (installed according to the installation

document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read

or has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description.. 2

Content ... 2

Application Overview ... 3

Setup Procedure ... 3

Create a New Project .. 3

Design the Project .. 4

The GPIO Pins .. 4

The GPIO Pin Functions ... 5

Bus Mode 6

Pin Mode 6

Control the GPIO Bus 7

Control the GPIO Pins 7

Read the State of a Bus 8

Read the State of a Pin 8

A Simple Project – IO1 as an Input ... 9

Description 9

Program Code 10

The if-else-endif Statement 10

Run the Program .. 11

Proprietary Information ... 12

Disclaimer of Warranties & Limitation of Liability 12

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00057

Page 3 of 12 www.4dsystems.com.au

Application Overview

The Designer environment enables the user to write 4DGL code in its natural

form to program the display module. 4DGL is a graphics oriented language

allowing rapid application development, and the syntax structure was

designed using elements of popular languages such as C, Basic, Pascal and

others. Programmers familiar with these languages will feel right at home

with 4DGL.

The purpose of this application note is, besides showing the user how to

configure and use the GPIO pins, to introduce the basics of 4DGL through

examples.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00057

Page 4 of 12 www.4dsystems.com.au

Design the Project

The GPIO Pins

Picaso display modules have thirteen general purpose input/output (GPIO)

pins available to the user. These are grouped as IO1 to IO5 and BUS0 to

BUS7. The five I/O pins (IO1 to IO5) provide flexibility of individual bit

operations while the 8 pins (BUS0 to BUS7), known as GPIO BUS, serve

collectively for byte wise operations. The IO4 and IO5 pins also act as

strobing signals to control the GPIO Bus. The GPIO Bus can be read or written

to by strobing IO4/BUS_RD or IO5/BUS_WR (respectively) a low pulse (with

a 50 nsec duration or greater). The figure below shows the backside of a

uLCD-32PTU and the location of the GPIO pins (IO1 to IO5 and BUS0 to BUS7)

in the expansion header. Refer to the datasheet of your display module for

the physical pin configuration.

Figure 1

The following text describes the pins of the uLCD-32PTU and their

purpose/s. Refer to your display module’s datasheet for the appropriate pin

description.

APPLICATION NOTES 4D-AN-00057

Page 5 of 12 www.4dsystems.com.au

IO1-IO5 pins:

General purpose I/O pins. Each pin can be individually set as an INPUT or

OUTPUT.

IO1 pin (Frame Mark pin):

The IO1 pin has two functions. It can be used as a GPIO pin, and it can also

be used to detect the start of a Frame. When used as a GPIO pin, simply

connect an Input/Output to the IO1 pin of the H1 header. When using IO1

for Frame Mark, simply leave the IO1 pin of the H1 header disconnected,

and read the status of IO1 as an Input. Note: frame mark function is not

available in uLCD-43P/PT/PCT modules. IO1 is used as a GPIO pin only.

IO2 pin (Lithium Battery Status pin):

The IO2 pin has two functions. It can be used as a GPIO pin, and it can also

be used to tell when the Lithium battery has reached a low level (3.7V) and

needs to be charged. When used as a GPIO pin, simply connect an

Input/Output to the IO2 pin on the H1 header. When using IO2 for Battery

Status, simply leave the IO2 pin on the H1 header disconnected, and read

the status of IO2 as an Input. Note: battery status detection function is not

available in uLCD-43P/PT/PCT modules. IO2 is used as a GPIO pin only.

IO3 pin (Peripheral Supply pin):

IO3 is controllable via the processor, or via the H2 Interface pin driven by an

external circuit. If IO3 is set as OUTPUT and driven HIGH the μSD and Display

are enabled, and disabled when driven LO. Set as INPUT to use an external

circuit to drive this pin. Note: peripheral supply function is not available in

uLCD-43P/PT/PCT modules. IO3 is used as a GPIO pin only.

IO4/BUS_RD pin (GPIO IO4 or BUS_RD pin):

General Purpose IO4 pin. Also used for BUS_RD signal to read and latch the

data in to the parallel GPIO BUS0 to BUS7.

IO5/BUS_WR pin (GPIO IO5 or BUS_WR pin):

General Purpose IO5 pin. Also used for BUS_WR signal to write and latch the

data to the parallel GPIO BUS0 to BUS7.

BUS0-BUS7 pins (GPIO 8-Bit Bus):

8-bit parallel General purpose I/O Bus.

Note: All GPIO pins are 5.0V tolerant.

The GPIO Pin Functions

The following sections will discuss how to configure the GPIO pins either as

input or output, how to control the logic level of a pin (when set as an

output), and how to read the logic level of a pin (when set as an input).

Again, the 5 I/O pins (IO1 to IO5) provide flexibility of individual bit

operations while the 8 pins (BUS0 to BUS7), known as GPIO bus, serve

collectively for byte wise operations. The term bus here, therefore, is used

to collectively refer to the pins BUS0 to BUS7, while the term pin refers to

any GPIO pin.

A GPIO function, when prepended with pin_, is used for configuring, setting,

or reading logic states from a pin. On the other hand, a GPIO function

prepended with bus_ is used for configuring, controlling, or reading logic

levels from a group of pins - in this case the GPIO bus.

APPLICATION NOTES 4D-AN-00057

Page 6 of 12 www.4dsystems.com.au

Bus Mode

Bus mode defines how the bus will be used – as an input or as an output. To

set the GPIO bus mode, use the function

bus_Set(arg1);

The lower 8 bits of arg1 are placed in the BUS direction register. The upper

8 bits of arg1 are ignored.

bit pin mode

0 output

1 input

Example:

bus_Set(0x00AA);

In binary, 0xAA (hexadecimal) is equal to 10101010.

arg1 1 0 1 0 1 0 1 0

BUS
direction
register

1 0 1 0 1 0 1 0

BUS pins BUS7 BUS6 BUS5 BUS4 BUS3 BUS2 BUS1 BUS0

mode input output input output input output input output

To set all of the bus pins as inputs:

bus_Set(0xFF);

To set all of the bus pins as outputs:

bus_Set(0x00);

Pin Mode

To individually set the mode of any of the IO1 to IO5 pins use the function:

pin_Set(mode, pin);

ignored

APPLICATION NOTES 4D-AN-00057

Page 7 of 12 www.4dsystems.com.au

For instance, to set IO1 as an output:

pin_Set(OUTPUT, IO1_PIN);

To set I03 as an input:

pin_Set(INPUT, IO3_PIN);

Control the GPIO Bus

After having configured the bus as an output, the pins can now be set to

high or low using the function

bus_Out(arg1);

The lower byte of arg1 is placed on the 8-bit-wide bus. The upper byte is

ignored. Note that any bus pin set as an input is not affected.

To illustrate:

bus_Out(0x0015);

In binary, 0x15 is equal to 00010101.

arg1 0 0 0 1 0 1 0 1

BUS pin BUS7 BUS6 BUS5 BUS4 BUS3 BUS2 BUS1 BUS0

state low low low high low high low high

Control the GPIO Pins

The pins can also be set to high or low individually, without affecting the

state of the other pins, using the function

pin_HI(pin);

This function outputs a high level (logic 1) on the specified pin previously set

as an output. If the pin is not already set as an output, it is automatically set

as such. Possible values for pin are shown below:

APPLICATION NOTES 4D-AN-00057

Page 8 of 12 www.4dsystems.com.au

Example:

pin_HI(BUS_3); //same as pin_HI(11);

To individually set the bus pins to low, use the function

pin_LO(pin);

This function outputs a low level (logic 0) on the specified pin previously set

as an output. If the pin is not already set as an output, it is automatically set

as such. Possible values for pin are shown below:

Example:

pin_LO(IO1_PIN);

Read the State of a Bus

After having configured the bus as an input, its state can be read with the

function:

bus_In();

The function returns the state of the bus as an eight bit value and assigns it

to the lower byte of the assigned variable.

Example:

var1 := bus_In();

The lower byte of var1 will get loaded with the state of the bus.

Read the State of a Pin

After having configured a pin as an input, its state can be read with the

function:

pin_Read(pin);

This function reads the logic state of the pin. It returns a logic 0 (0x0000) or

a logic 1 (0x0001).

Example:

var1 := pin_Read(IO1);

APPLICATION NOTES 4D-AN-00057

Page 9 of 12 www.4dsystems.com.au

The variable var1 will have a value of either 0x0000 or 0x0001, depending

on the logic state of IO1.

A Simple Project – IO1 as an Input

Description

This simple project reads the logic state of the IO1 pin which was configured

as an input and connected to a tact switch (see schematic in Figure 17). If

the logic state of IO1 is 1, the screen displays a dark reddish circle. If the logic

state of IO1 is 0, the screen displays a red circle. The screen (uLCD-32PTU,

portrait orientation in this example) will look like as shown below.

ON Red circle – IO1 is low OFF Dark red circle – IO1 is high

Figure 2 Switch Schematic

Figure 3 Switch (Breadboard)

APPLICATION NOTES 4D-AN-00057

Page 10 of 12 www.4dsystems.com.au

Program Code

Below is a code for the project. Comments are added to guide the user.

Figure 4

Attached is a zipped file of the code in Figure 19. A brief explanation now

follows. Lines previously explained are bypassed.

Lines 10 to 19 make up the repeat…forever loop. It begins with

and ends with

Instructions in between these lines are executed forever.

The if-else-endif Statement

Lines 11 to 18 now make up the if-else-endif statement. The program makes

use of the if-else-endif statement to make a decision. Below is the syntax or

format:

First the program tests a condition. If the condition is found to be true, the

program executes a set of instructions. If not (else), the program executes

another set of instructions. In Figure 19, the condition being tested is the

logic state of IO1_PIN. If it is at logic 0

The program prints “ON” and draws a red solid circle on the screen.

Else, if IO1_PIN is at logic 1 or for any other condition,

APPLICATION NOTES 4D-AN-00057

Page 11 of 12 www.4dsystems.com.au

the program prints “OFF” and draws a dark red solid circle on the screen.

The if-else-endif statement ends with the line

Now play with the tact switch and the colour of the circle should change

accordingly. To learn more about the if-else-endif statement and loops,

consult the 4DGL Programmers Reference Manual .

Run the Program

For instructions on how to save a Designer project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU display module is commonly used as an example, but the

procedure is the same for other displays.

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00057

Page 12 of 12 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

