
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi Displaying Third Party Fonts

FAT16

DOCUMENT DATE: 21st JANUARY 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00080

Page 2 of 20 www.4dsystems.com.au

 Description

This application note explains how custom fonts can be used on a Picaso or

Diablo16 display module in the ViSi environment:

Before getting started, the following are required:

 Any of the following 4D Picaso and gen4 Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

uLCD-24PTU uLCD-32PTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series

gen4-uLCD-70D series
uLCD-35DT uLCD-43D series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16 display

modules as well.

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

for non-gen4 displays(uLCD-xxx)

 4D Programming Cable & gen4-PA, / gen4-IB / 4D-UPA

for gen4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4-uLCD-24D/
https://www.4dsystems.com.au/product/gen4-uLCD-28D/
https://www.4dsystems.com.au/product/gen4-uLCD-32D/
https://www.4dsystems.com.au/product/gen4-uLCD-35D/
https://www.4dsystems.com.au/product/gen4-uLCD-43D/
https://www.4dsystems.com.au/product/gen4-uLCD-50D/
https://www.4dsystems.com.au/product/gen4-uLCD-70D/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_43D/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00080

Page 3 of 20 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview ... 4

Setup Procedure ... 4

Create a New Project ... 4

Design the Project .. 5

Add a String Object ... 5

uSD Card Files for String Objects.. 7

Open a String File and Print a String ... 7

Open a String File 7

Print a String 7

Memory Address of a String 8

Index of a String Object 8

Message ID 9

Print a Specific Message 11

Set the Font .. 12

uSD Card Files for Fonts ... 13

Generated Font Files... 13

Load the Files for a Font 14

Set the Font ID 14

Design with the Program Skeleton .. 15

Add a String Object 16

Paste the Code for a String Object 17

List of Attached Files ... 18

Tips ... 19

..\4D Labs\Picaso Visi ... 19

Proprietary Information ... 20

Disclaimer of Warranties & Limitation of Liability 20

APPLICATION NOTES 4D-AN-00080

Page 4 of 20 www.4dsystems.com.au

 Application Overview

There are three built-in fonts of the Picaso processor. These are:

 Font1 (5x7)

 Font2 (8x8)

 Font3 (8x12)

The user might need more stylish and larger size fonts which is a need

addressed in this application. The user can also import ANSII or UNICODE

fonts. For the Diablo16 processor, the available system font IDs are:

 1 for FONT_1 = System 5x7

 2 for FONT_2 = System 8x8

 3 for FONT_3 = System 8x12 (Default)

 4 for FONT_4 = System 12x16

 5 for FONT_5 = MS San Serif 8x12

 6 for FONT_6 = Deja Vu Sans Condensed 9pt

 7 for FONT_7 = Deja Vu Sans 9pt

 8 for FONT_8 = Deja Vu Sans Bold 9pt

 9 for FONT_9 = System 3x6

 10 – Not currently available for SPE Serial, N/A

 11 for FONT_11 = EGA 8x12 font

A customer might need the external fonts to be displayed in two ways,

 Display some text set in the design time.

 Display the test in run time.

Both of these are achievable.

When you set the text in design time, the string will be stored on the uSD

card and can be displayed whenever it’s needed. Whereas in run time a text

could be displayed using putch(), putstr(), print(), or putnum() command.

NOTE: The file_Dir() command is a command that writes the list of directory

directly to the screen. This command is also affected by the fonts change.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00080

Page 5 of 20 www.4dsystems.com.au

 Design the Project

Add a String Object

Go to Widgets, select Strings object under the Labels tab.

Click on to the WYSIWYG screen to drop the string object. A string object has

now been created. This is Strings1.

Click on the ellipsis dots of the Strings property of the Object Inspector for

Strings1.

APPLICATION NOTES 4D-AN-00080

Page 6 of 20 www.4dsystems.com.au

The Strings Editor window appears.

Click on the left window and input the string “Hello World”.

The output appears at the right window. Click OK. The WYSIWYG screen is

now updated.

APPLICATION NOTES 4D-AN-00080

Page 7 of 20 www.4dsystems.com.au

The string object can be moved to a new location and its area can be resized.

uSD Card Files for String Objects

When you compile your project, Workshop combines the contents of the

string objects that you have added to the WYSIWYG screen into a single file.

This file will then be copied to the uSD card, which will then be mounted to

the display module. When the program runs on the display module, it will

access this file to display any of the stored strings. For the object Strings1

that we have just created, the contained string is “Hello World”. Discussions

of the functions used for opening and accessing the contents of a string file

now follow.

Open a String File and Print a String

The filename extension of a string file is “.txf”. It is important for the

program to know where the string of a certain string object is stored in the

file. Workshop stores the locations (or memory addresses) of strings and

other information in automatically-generated constants.

Open a String File

Going back to the object Strings1, the string “Hello World” will be added,

when we compile the project, to a file with the extension “.txf”. For

example,

Workshop derives the filename of a string file from that of your project. To

retrieve the stored string, we must first open the file. The 4DGL function for

opening a file is

This function returns a handle, which can be used for further operations on

the file.

Print a String

The function for printing a specific string from the uSD card is

The first parameter for the function “PrintDisk()” is the handle for a string

file that has been opened. Here the handle is “hstrings”.

APPLICATION NOTES 4D-AN-00080

Page 8 of 20 www.4dsystems.com.au

Memory Address of a String

The second and third parameters are the high and low words of the starting

memory address of the string to be printed. The fourth parameter is the size

of the string. The values of these parameters are taken care of for you by

the ViSi environment. All that you will have to take note of is the integer

inserted into the parameter names, which are actually constants. To

illustrate,

Index of a String Object

The integer corresponds to the index of the string object which contains the

string to be printed. The function above therefore prints the contents of the

object Strings1. Suppose we add another string object to the WYSIWYG

screen. This would be Strings2.

The correct parameters for printing the contents of this object would be

To view the actual values of the constants used as parameters, open the

include file indicated in the image below by putting the cursor on the

filename text, clicking on the right mouse button, then selecting “Open file

at Cursor”. Worskhop derives the filename of this include file from that of

your project. Here the project was saved with the name “stringsOnly”.

APPLICATION NOTES 4D-AN-00080

Page 9 of 20 www.4dsystems.com.au

The include file now opens. This include file contains constants and their

values automatically generated by Workshop.

Note that the include file “stringsOnlyConst.inc” will only be generated after

the project is saved and compiled.

Message ID

The fourth parameter of the function “PrintDisk()” is the message ID.

A string object can be edited so that it contains multiple messages. We can

then print a specific message found inside a string object by setting the value

of the fifth parameter of the function “PrintDisk()”. Going back to the Strings

Editor for Strings1, we add another line of text.

APPLICATION NOTES 4D-AN-00080

Page 10 of 20 www.4dsystems.com.au

On the right part of the Strings Editor window it says “Lines/Message: 1”.

Since there are two lines of text added to the Input Edit Strings box, there

are two messages therefore in the object Strings1. Click on the up and down

arrows to preview the messages.

Experiment with the width and height of a string object to change the value

of the property “Lines/Message”.

APPLICATION NOTES 4D-AN-00080

Page 11 of 20 www.4dsystems.com.au

Print a Specific Message

The command for printing the first message of String1 is

The output is

The command for printing the second message of String1 is

The output is

APPLICATION NOTES 4D-AN-00080

Page 12 of 20 www.4dsystems.com.au

Note: The function “PrintDisk()” is defined in the include file "PrintDisk.inc".

This file is not included in a newly created ViSi code by default, so you will

have to include it manually. Here it is shown how it is included on line 10 of

the 4DGL code.

Attached is a zip file containing a simple project that shows how a string

file is opened and how string objects are displayed.

Set the Font

The font of a string object can be changed in the Strings Editor window.

Going back to the object Strings1, set the values of the font and size

properties as shown below. Click OK.

APPLICATION NOTES 4D-AN-00080

Page 13 of 20 www.4dsystems.com.au

The string object on the WYSIWYG screen is now updated with a new font.

uSD Card Files for Fonts

When you compile your project, Workshop generates the associated files

for the fonts that you have added to the WYSIWYG screen. These files will

be copied to the uSD card, which will then be mounted to the display

module. When the program runs on the display module, it will access these

files to print text onscreen using the desired font. The string may come from

the uSD card, from the program memory, or it can be a literal constant. For

our working string object, Strings1, the string is “Hello World” and the font

is Cambria. Discussions of the functions used for loading files associated to

a font now follow.

Generated Font Files

There are two files, generated by Workshop, associated to a certain font.

These files have the filename extensions “.gcn” and “.dan”, where “n” refers

to the index of a font added when designing using the WYSIWYG screen.

Workshop will therefore generate the files below for the first font added to

the project.

The second font added to the project will be associated with the files:

APPLICATION NOTES 4D-AN-00080

Page 14 of 20 www.4dsystems.com.au

Similar to string files, Workshop derives the filename of font files from that

of your project.

Load the Files for a Font

To use a font from the uSD card, we must first load it. The function for

loading the two files associated to a font is

This function returns a handle for the uSD card font. The handle can then be

used for setting the current font ID. Here the font files are those associated

to the first font added to the WYSIWYG screen.

Set the Font ID

The function

sets the current font. The parameter “fontID” can be a handle for a uSD card

font that has been opened. To illustrate,

This will set the current font to the first font that was added to the project.

The succeeding print commands will now use this font until a new font ID is

selected.

Now suppose we have selected the font “Forte” as the first font and have

saved the project with the filename “AddFonts”, Workshop would now

generate the two files below for the font “Forte”.

We would now load these files with the command

We would set the current font with the command

And the commands

would produce an output similar to that shown below.

APPLICATION NOTES 4D-AN-00080

Page 15 of 20 www.4dsystems.com.au

Built-in fonts can also be used as font IDs. Refer to the lists given in the

Application Overview section of this application note. Attached is a simple

program that demonstrates how external fonts or fonts from the uSD card

are used.

Design with the Program Skeleton

With the foregoing separate discussions on the format of files associated to

string objects and fonts and the functions used for loading and accessing

these files, we can now proceed to modifying the default program skeleton

of a newly created ViSi project. Note that several of the functions we

discussed earlier are already a part of the program skeleton. We will just

have to uncomment the lines with which we are interested. Indicated in the

image below are the lines that will be needed in this application. The single-

line comment symbols are removed. Also, the block comment symbols “/*”

and “*/” on lines 15 and 31 are omitted as the contained block is also

needed.

The variables “hstrings” and “hFontx” declared on lines 12 and 13 will be

used as handles for a string file and font files, respectively.

APPLICATION NOTES 4D-AN-00080

Page 16 of 20 www.4dsystems.com.au

The variable “hstrings” will be used as the handle for the string file

“NoName1.txf”.

Again, Workshop will rename the text file when the project is saved.

The variable “hFontx” will be used as the handle for the files associated to a

font.

The convention is to rename the variable “hFontx” declared on line 13 to

“hFont1”.

On line 28, replace the letter “n” with an integer, as shown below.

The variable “hFont1” is now the handle that will be used as a reference for

the first font that will be added to the project.

Add a String Object

Starting from a blank WYSIWYG screen, add a string object which contains

the string “Hello World” and set the font to “Cambria”. This is Strings1. The

process for doing this has been discussed previously. Below is the result.

APPLICATION NOTES 4D-AN-00080

Page 17 of 20 www.4dsystems.com.au

Paste the Code for a String Object

Put the cursor somewhere just before the indefinite repeat-forever loop as

shown below.

In the object inspector, click on the “Paste Code” button.

The code area is now updated.

On line 38, change the fifth parameter of the function PrintDisk() from “i” to

“0”.

APPLICATION NOTES 4D-AN-00080

Page 18 of 20 www.4dsystems.com.au

Don’t forget to add the include file "PrintDisk.inc" to your 4DGL code.

Save the project with a name. Here it is saved as “Hello”.

Double check if the string and font files are renamed appropriately.

Attached is a project for demonstrating how to print a string from the uSD

card using a font from the uSD card.

List of Attached Files

File Description

stringsOnly.zip Demonstrates how to print strings from
the uSD card

fontsOnly.zip Demonstrates how to use uSD card
fonts

hello.zip Demonstrates how to print a string
from the uSD card using a font from the
uSD card.

AddFonts.zip Prints two string objects; uses two uSD
card fonts.

APPLICATION NOTES 4D-AN-00080

Page 19 of 20 www.4dsystems.com.au

Tips

 The changes you make on the object properties after pasting the

code do not reflect on the code. That is if you wish to edit the object

properties you need to “Paste Code” again after doing so.

 There is a complete STRINGSDEMO.4DViSi example in the 4D

Workshop4 IDE. Click ‘Samples’, select Picaso ViSi – Click for filtered

browse, look for,

..\4D Labs\Picaso Visi

APPLICATION NOTES 4D-AN-00080

Page 20 of 20 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

