
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

 

  
 

Serial Connection to an Arduino Host 

DOCUMENT DATE:  20th May 2019 

DOCUMENT REVISION: 1.1 

W W W . 4 D S Y S T E M S . C O M . A U  



APPLICATION NOTES  4D-AN-00092 
 

 
Page 2 of 25   www.4dsystems.com.au 

  Description 

This Application Note explores the possibilities provided by the Serial 

environment in Workshop for a 4D display module to work with an Arduino 

host. In this example, the host is an Arduino Uno board. The host can also 

be an Arduino Mega 2560 or Due. Ideally, the application described in this 

document should work with any Arduino board that supports software serial 

or with at least one UART serial port. See specifications of Aduino boards 

here. 

 

 Any of the following 4D Goldelox display modules: 

 

uOLED-96-G2 uOLED-128-G2 uOLED-160-G2 
uLCD-144-G2   

 

or any superseded module that supports the Serial environment. 

Visit www.4dsystems.com.au to see the latest products using the 

Goldelox graphics processor. 

 

 Any of the following Picaso display modules: 

 

uLCD-24PTU uLCD-28PTU uVGA-III 
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT 

 

and other superseded display modules which support the ViSi 

environment 

 

 

 The target module can also be a Diablo16 display 

 

gen4-uLCD-24D 
Series 

gen4-uLCD-28D 
Series 

gen4-uLCD-32D 
Series 

gen4-uLCD-35D 
Series 

gen4-uLCD-43D 
Series 

gen4-uLCD-50D 
Series 

gen4-uLCD-70D 
Series 

  

uLCD-35DT uLCD-43D Series uLCD-70DT 
 

 

 4D Programming Cable / µUSB-PA5/µUSB-PA5-II  

for non-gen4 displays (uLCD-xxx) 

 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,  

for gen-4 displays (gen4-uLCD-xxx) 

 micro-SD (µSD) memory card 

 Workshop 4 IDE (installed according to the installation document) 

 When downloading an application note, a list of recommended 

application notes is shown. It is assumed that the user has read or 

has a working knowledge of the topics presented in these 

recommended application notes. 

 

 

 

 

 

 

 

http://arduino.cc/en/Products.Compare
http://arduino.cc/en/Products.Compare
https://www.4dsystems.com.au/product/uOLED_96_G2/
https://www.4dsystems.com.au/product/uOLED_96_G2/
https://www.4dsystems.com.au/product/uOLED_128_G2/
https://www.4dsystems.com.au/product/uOLED_128_G2/
https://www.4dsystems.com.au/product/uOLED_160_G2/
https://www.4dsystems.com.au/product/uLCD_144_G2/
http://www.4dsystems.com.au/
https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/


APPLICATION NOTES  4D-AN-00092 
 

 
Page 3 of 25   www.4dsystems.com.au 

  Content 

Description ............................................................................................. 2 

Content .................................................................................................. 3 

Application Overview .............................................................................. 4 

Setup Procedures .................................................................................... 4 

Program the Arduino Host ....................................................................... 4 

Install the Library ......................................................................... 4 

Modify the Library for the Arduino Due ........................................ 6 

Open the Attached Arduino Sketch Files ..................................... 7 

Understanding the Arduino Demo Sketch (w/o Message 

Logging) ...................................................................................... 7 

Include the Library Files 7 

Define the Serial Port to be Used 8 

The Acknowledgment Byte 8 

The Error-handling Routine 10 

Set the Timeout Limit 10 

Set the Baud Rate 10 

Reset the Arduino Host and the Display 11 

Let the Display Start Up 12 

Set the Screen Orientation 12 

Clear the Screen 12 

uSD Card Mount Routine 13 

Send a String 13 

Understanding the Arduino Demo Sketch (with Message 

Logging) .................................................................................... 13 

Enable Message Logging 13 

Set the Baud Rate 14 

Displaying Returned Values 14 

The Error-handling Routine 14 

Final Output 15 

Connect the 4D Display Module to the Arduino Host .............................. 15 

Using the New 4D Arduino Adaptor Shield (Rev 2.00)............... 15 

Definition of Jumpers and Headers 15 

Default Jumper Settings 16 

Change the Arduino Host Serial Port 18 

Power the Arduino Host and the Display Separately 18 

Using the Old 4D Arduino Adaptor Shield (Rev 1) ..................... 19 

Connection Using Jumper Wires ............................................... 20 

Changing the Serial Port of the Genie Program ........................ 21 

Changing the Maximum String Length ...................................... 23 

Proprietary Information ........................................................................ 25 

Disclaimer of Warranties & Limitation of Liability .................................. 25 

 

 

 

 

 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 4 of 25   www.4dsystems.com.au 

Application Overview 

In Serial Picaso Getting Started - The SPE Application the user was 

introduced to how a 4D display module is configured as a serial slave device 

and to the basics of the Serial Protocol.  

 

Setup Procedures 

The display must be configured as a slave device first before it can be controlled by 

a host. For instructions on how to launch Workshop 4, how to connect the display 

module to the PC, and how to configure the display as a slave device, kindly refer 

to the section “Setup Procedure” of any of the application notes below. Choose 

according to your display module’s processor. 

 

Serial Goldelox Getting Started - The SPE Application 

Serial Picaso Getting Started - The SPE Application 

Serial Diablo16 Getting Started - The SPE Application 

 

These application notes also introduce the user to the Serial Protocol thru the use 

of the Serial Commander. 

 

 

 

Program the Arduino Host 

This section discusses the source code for the Arduino host for it to work 

with the display module. It is assumed that the user has a basic 

understanding of how the Arduino host works and how to program in the 

Arduino IDE. Inexperienced users may need to frequently refer to the 

Arduino website for more information. 

 

Install the Library 

The Arduino-4D Serial Libraries files, along with the BigDemo files, are 

copied to your PC during Workshop 4 installation. See the folder shown 

below (for Windows 8). 

 
 

The 4D Labs contain 3 Serial folder namely ‘Picaso Serial’, ‘Goldelox Serial’ 

and ‘Diablo Serial’. Inside these folders are libraries for different 

microcontrollers/microprocessors. 

 

http://www.4dsystems.com.au/appnote/4D-AN-00090/
http://www.4dsystems.com.au/appnote/4D-AN-00086/
http://www.4dsystems.com.au/appnote/4D-AN-00090/
http://www.4dsystems.com.au/appnote/4D-AN-00110/


APPLICATION NOTES  4D-AN-00092 
 

 
Page 5 of 25   www.4dsystems.com.au 

 
 

Copythefolder“Picaso_Serial_4DLib/Diablo_Serial_4DLib/Goldelox_Serial

_4DLib” to where additional Arduino libraries are saved. Here is a link to a 

tutorial on installing additional libraries in the Arduino IDE. 

 

http://arduino.cc/en/Guide/Libraries 

 

 

In Windows 8 for example, the library files will be saved here:  

 

 
 

Also, create a copy of the folder BigDemo inside Picaso_Serial_4DLib. 

 

 
The BigDemo folder contains the BigDemo.ino file, which demonstrates the 

use of all the serial commands. The sketch presented in this application note 

is a simplified version of the BigDemo sketch. 

 C 

 C 

 C 

 C 

 C 

 C 

 C 

http://arduino.cc/en/Guide/Libraries


APPLICATION NOTES  4D-AN-00092 
 

 
Page 6 of 25   www.4dsystems.com.au 

 
 

Remember to restart the Arduino IDE after installing the library files. As a 

quick test, the BigDemo sketch should be accessible under the File – 

Examples menu.  

 

Modify the Library for the Arduino Due 

If the host is an Arduino Due, one of the library files needs to be edited. For 

example open the file “Picaso_Serial_4DLib.cpp” (create a backup copy 

before editing). 

 
 

Find the line shown below. 

 
 

Comment out the line so it becomes: 

 
Save the file.  

 C 

 

 C 

 C 

 C 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 7 of 25   www.4dsystems.com.au 

Note: This example is also applicable for Diablo Serial Library and Goldelox 

Serial Library. 

Open the Attached Arduino Sketch Files 

There are two sketch files attached to this application note – a basic demo 

sketch without message logging and another version with message logging. 

Interested users can use the latter version for learning and debugging 

purposes. Since the serial monitor uses the port Serial0 for logging 

messages, either a software serial port or any of the other three hardware 

serial ports can be used for the display. 

 

 
 

Understanding the Arduino Demo Sketch (w/o Message Logging) 

Open, compile, and download to the Arduino host the attached sketch 

shown below. Note that comments have been added to the code for the 

benefit of the user. Additional explanations now follow. 

 

 
 

 

 

 

Include the Library Files 

For Picaso and Diablo Arduino Sketch: 

 

 
If Diablo16 Displays are going to be used, comment the lines that is pointed 

by the red arrows to include the Diablo Serial Library and then remove the 

comments ‘//’ pointed by the blue arrows to comment the inclusion of the 

Picaso Serial Library. 

 

Note: Goldelox example has a different Arduino sketch attached. 

 

 

 

 

 C 

 C 

 C 

 C 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 8 of 25   www.4dsystems.com.au 

Define the Serial Port to be Used 

Here Serial0 will be used for communicating with the display module. 

 

 
 

To use a software serial port, comment out the line for the hardware port 

definition and uncomment the software serial port lines. 

 

 

 
 

If using the 4D Arduino Adaptor Shield and pins 10 and 11 are used as a 

software serial port for communicating with the display, jumpers J3 and J4 

(of the 4D Arduino Adaptor Shield) need to be set accordingly. See the 

section “Connect the 4D Display Module to the Arduino Host” for more 

details. 

 

The line below tells the library that the serial port referred to by 

DisplaySerial will be used for talking to the display. 

 

 

The Acknowledgment Byte 

When the display module receives a command from the host, it executes 

the command and sends back an acknowledgment (and reply bytes if 

necessary). It is very important that the Arduino host waits for the 

acknowledgment (and reply bytes) before sending another command. 

Section 2.4 Introduction and Guidelines to the Serial Protocol of the 

Picaso/Diablo/Goldelox Serial Command Set Reference Manual emphasizes 

this point. 

 C 

 C 

 C 

 C 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


APPLICATION NOTES  4D-AN-00092 
 

 
Page 9 of 25   www.4dsystems.com.au 

 
The built-in high-level commands of the Arduino-Picaso Serial Library are 

coded such that they will automatically wait for an acknowledgment (and 

reply bytes if there are) from the display. The simple command for clearing 

the screen is taken as an example. 

 

 
 

Section 5.2.1 Clear Screen of the Picaso/Diablo/Goldelox Serial Command 

Set Reference Manual describes in detail the command for clearing the 

screen. Inside the library file “Picaso_Serial_4DLib.cpp”, the function 

gfx_Cls( ) is defined as follows: 

 

 
Note that after sending off the command bytes, the routine now calls on the 

function GetAck( ), which will wait for the ACK byte from the display module. 

Many of the basic commands (i.e., those that do not necessarily require a 

specific reply from the display module besides the ACK byte) are coded in a 

manner similar to this.  

 

Now the function GetAck( ) is also defined in Picaso_Serial_4DLib.cpp. 

Essentially, GetAck( ) waits for the ACK byte from the display for a certain 

period of time. If the ACK byte is received within the time limit, the function 

exits and the program goes back to the main loop. If nothing is received 

within the specified waiting time limit, GetAck( ) calls on the error-handling 

routine, passing to it two arguments – an integer for indicating that a 

timeout has occurred and a character which holds an insignificant value. If a 

byte other than the ACK byte is received, GetAck ( ) calls on the error 

handler, passing to it two arguments – an integer for indicating that a NAK 

condition has occurred and a character which holds the value of the invalid 

byte received. 

  

The user now has the option of writing the routine for handling errors. The 

function mycallback( ) of the demo sketch is an example of such a routine. 

One important thing to remember is that when the library calls on the error-

handling routine, it will pass to it two arguments – an integer and a 

character. To let the library know which function to call when an error 

occurs, write the line shown below at the start of the program. 

 

 

Commands should only be sent and their response received, 

before another command is sent. If two commands are sent 

before the first response is received, incorrect operation may 

follow. 

 C 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


APPLICATION NOTES  4D-AN-00092 
 

 
Page 10 of 25   www.4dsystems.com.au 

The Error-handling Routine 

The function mycallback( ) will execute when an error occurs (i.e., the 

display has taken too long to respond or it has sent back a reply other than 

the expected ACK byte).  

 

 
 

Note that mycallback( ) will only blink the LED at pin 13 indefinitely. The user 

may also use this function to reset the display and re-establish 

communications. When an error occurs, it would be improper for the 

program to proceed further without resetting the display. Again, 

 

In the other version of this sketch (that which has a message logging 

feature), the error handler uses the integer and character arguments passed 

to it to specify the exact nature of the error. 

Set the Timeout Limit 

Set how long the host will wait for replies coming from the display by writing 

the line shown below at the start of the program. 

 

 
 

Set the Baud Rate 

Communication with the display is set at 9600 bps. 

 

 
 

Logically, the 4D display should also communicate with the Arduino host at 

the same baud rate. To check the baud rate of the display module check the 

baud rate indicated on the Serial Platform Environment (SPE) application 

splash screen. 

 
Commands should only be sent and their response received, 

before another command is sent. If two commands are sent 

before the first response is received, incorrect operation may 

follow. 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 11 of 25   www.4dsystems.com.au 

 

 

 

Reset the Arduino Host and the Display 

To make resetting more convenient, the code below resets the display 

module when the program is restarted. 

 
If using the new 4D Arduino Adaptor Shield (Rev 2) 

Note that the GPIO pin D4 of the Arduino host is used here for resetting the 

display. When using the new 4D Arduino Adaptor Shield (Rev 2.00 written 

on the PCB), make sure that pin RES is connected to pin AR in jumper J1. See 

the section “Connect the 4D Display Module to the Arduino Host”. If using 

the old 4D Arduino Adaptor Shield (Rev 1), simply change the code above. 

Use pin 2 instead of pin 4. 

 

 
If using the old 4D Arduino Adaptor Shield (Rev 1) 

 

If using jumper connecting wires, connect the RESET pin of the display 

module to the D4 pin of the Arduino with a 1kohm series resistor in between 

(see the section “Connect the 4D Display Module to the Arduino Host”), 

and modify the code as shown below. 

 

 

Comms 9600 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 12 of 25   www.4dsystems.com.au 

 
If using jumper wires 

 

Note that the logic state for resetting the display is now 0 instead of 1. This 

is because the display module’s RESET pin is directly connected to D4 via a 

1kohm resistor. If using a 4D Arduino Adaptor Shield, the display module’s 

RESET pin is switched by the D4 pin via a transistor. 

Let the Display Start Up 

The five second – delay below waits for the display module to start up. 

 

 
 

In section 2.5 Power-Up and Reset of the Picaso/Diablo/Goldelox Serial 

Command Set Reference Manual, it says: 

 

 

 

 

 

 

 

 

Set the Screen Orientation 

This is the first command sent to the display module.  

 

 
 

It sets the orientation of the display to “reversed landscape”. Refer to 

section 5.2.34/5.2.24(GOLDELOX) Screen Mode of the 

Picaso/Diablo/Goldelox Serial Command Set Reference Manual for more 

information. Note that the function returns the previous screen mode value. 

Thus, the user can write: 

 

Clear the Screen 

 

 
 

Section 5.2.1 Clear Screen of the Picaso/Diablo/Goldelox Serial Command 

Set Reference Manual describes in detail the command for clearing the 

screen. 

 

 

 

 

 

 

 

When the PICASO Display Module comes out of a power-

up or external reset, a sequence of events is executed 

internally. The user should wait at least 3 seconds for the 

start-up to take place before attempting to 

communicate with the module. 

 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


APPLICATION NOTES  4D-AN-00092 
 

 
Page 13 of 25   www.4dsystems.com.au 

uSD Card Mount Routine 

 

 
 

This routine is optional but included in the program for practice. The 

program won’t go further unless a uSD card is inserted in the LCD. This 

routine can be commented out and won’t affect the final output. 

 

Send a String 

 

 
 

For more information, refer to section 5.1.3 Put String of the 

Picaso/Diablo/Goldelox Serial Command Set Reference Manual. Note that 

the function returns the length of the string printed. 

Understanding the Arduino Demo Sketch (with Message Logging) 

In this section, the Serial Monitor of the Arduino IDE is used to send 

messages to the PC. This is an effective method of debugging a serial 

program and/or getting acquainted with the Arduino Serial Library. For the 

Arduino Uno, the user can use a software serial port only to talk to the 

display since the hardware port Serial0 is used exclusively by the Serial 

Monitor. The following images show the results for testing the basic demo 

sketch files at 9600 bps on three Arduino boards. The display module was a 

uLCD-32PTU. 

 

 
 

 

Enable Message Logging 

The line 

 
enables message logging. If message logging is enabled, Serial0 is now used 

to communicate with the Serial Monitor.  

 

 

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads


APPLICATION NOTES  4D-AN-00092 
 

 
Page 14 of 25   www.4dsystems.com.au 

To disable message logging, simply comment out line 41 of the sketch as 

shown below.  

 

 
 

All message-logging-related lines throughout the sketch will now be 

disregarded.  

Set the Baud Rate 

Communication with the Serial Monitor is set at 115200 bps.  

 

 
 

Make sure that the Serial Monitor is configured properly. 

 

 

Displaying Returned Values 

Note that when the display module receives the put string command and 

parameters, it prints the string and sends back an acknowledgment byte and 

two more bytes – the MSB and LSB values of the length of the string just 

printed. Thus the function Display.putstr( ) returns the string length. Here it 

is stored in a variable. 

 
 

The Error-handling Routine 

 

 
The error-handler above is an improved and complete version of the 

mycallback ( ) routine. It uses the arguments passed to it to inform the user 

of the exact nature of the error. Take note that aside from the GetAck( ) 

function, there are other functions in the Arduino Serial Library that calls 

on the error handler when an error occurs. See the file 

“Picaso/Diablo/Goldelox_Serial_4DLib.cpp” for more information. 

 

 

 C 

 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 15 of 25   www.4dsystems.com.au 

Final Output 

 

 
 

 

 

 

 

 

 

 

Connect the 4D Display Module to the Arduino Host 

This section discusses several ways of connecting the display module to the 

Arduino host. The user has the option of using a 4D Arduino Adaptor Shield 

(there are two versions of this – the old and the new) or jumper wires.   

Using the New 4D Arduino Adaptor Shield (Rev 2.00) 

Definition of Jumpers and Headers 

 

 
The 5-way cable coming from the display should be connected to H1. When 

the Arduino host cannot supply enough power to the display, the display can 

Jumpers 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 16 of 25   www.4dsystems.com.au 

be powered separately thru H2 (jumper J2 should be configured 

accordingly). 

 

J1 is for choosing which pin resets the display – either the RES pin of H2 or 

pin D4 of the Arduino host. J2 is for choosing the power supply source for 

the display – either the Arduino host or the programming module connected 

to H2 (if the Arduino host power supply is inadequate). The middle pin of J3, 

RX, goes to the TX pin of the display and must be tapped to the correct RX 

pin of the Arduino host. The middle pin of J4, TX, goes to the RX pin of the 

display and must be tapped to the correct TX pin of the Arduino host. 

 

Default Jumper Settings 

The image on the right column shows the default settings for jumpers J1 to 

J4.  

 Pin D4 of the Arduino host resets the display (J1 shorts pins RES and 

AR).  

 The Arduino host powers the display (J2 shorts pins PWR and AR). 

 The Arduino host talks to the display thru port Serial0. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

J1 J2 J3 J4 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 17 of 25   www.4dsystems.com.au 

Default Settings for J3 and J4 

Jumpers J3 and J4 are configured, by default, to connect RX (TX0 of the 

display module) to D0 (RX0 of the Arduino) and TX (RX0 of the display 

module) to D1 (TX0 of the Arduino). Communication in this case is thru 

Serial0 of the Arduino host and COM0 of the display module.  

 

 

 

 

 

 

 
 

 

 

 

 

 

The Arduino Host Powers the Display 

The following are images wherein the display module is powered by the 

Arduino host. Note that the power supply must be able to provide enough  

 

current for both the display module and the Arduino host. Refer to your 

display module’s datasheet for the specified supply current. 

Using the USB cable (the Arduino host powers the display): 

 
 

 

Using the jack(the Arduino host powers the display): 

 
 

 

RX0 

Display 

module 
TX0 

4D Arduino 

Adaptor Shield 

Arduino host 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 18 of 25   www.4dsystems.com.au 

Change the Arduino Host Serial Port 

To use the other hardware serial ports of the Mega or Due, remove the 

jumper connectors of J3 and J4 and connect the display TX0 and RX0 pins to 

the desired Arduino serial port TX and RX pins using jumper wires. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Power the Arduino Host and the Display Separately 

If the display requires a higher current to operate (the uLCD-70DT for 

instance), it is not advisable to power it off the 5V out of the Arduino host. 

To power the display separately from the Arduino board, set J2 as shown 

below.  Power will then be supplied to the display thru H2. 

 

 
 

H2 is for the 4D USB Programming Cable or µUSB-PA5 (power supply 

source), and H1 is for the display module. The following image shows how 

the Arduino host and the 4D display are connected when they are powered 

separately.  

 

 

 

4D Arduino 

Adaptor Shield 

Arduino host 

Display 

module 
TX0 

RX1, RX2, RX3, or 

software serial RX pin 

H2 H1 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 19 of 25   www.4dsystems.com.au 

Complete setup (host and display are powered separately): 

 
 

Note that the display module cannot be programmed thru the µUSB-PA5 in 

this setup since H2 transfers power only. Before programming the display 

module, disconnect it first from the Arduino Adaptor Shield. Likewise, 

before programming the Arduino host, make sure that it is not connected to 

the display module. Do this when the communication is thru Serial0 

(Arduino host) and COM0 (4D display). Always double check the orientation 

of the connections. 

 

 

 

Using the Old 4D Arduino Adaptor Shield (Rev 1) 

 
 

The old 4D Arduino Adaptor Shield (Rev1) uses digital pin D2 for resetting 

the display. The reset routine of the Arduino sketch must be modified 

accordingly. 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 20 of 25   www.4dsystems.com.au 

Connection Using Jumper Wires 

 

 

 

 

Note that the display here is powered off the 5V out of the Arduino board. 

Pin D4 of the host will also reset the display (logic of the reset routine must 

be inverted). Connect the 5V and GND pins of the display to an external 5V 

power supply source if a separate supply is needed. The reset pin, RES, of 

the display can also be connected to another GPIO pin of the Arduino host 

and the sketch can be modified accordingly. 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 21 of 25   www.4dsystems.com.au 

Changing the Serial Port of the Genie Program 

A ViSi-Genie program uses the serial port COM0 by default. This is also the 

serial port through which the display is programmed by Workshop. The 

datasheet for the uLCD-32PTU, for example, shows the H1 I/0 Expansion 

header and the programming header. 

 

 

 

 
As the reader may have already perceived, the TX and RX pins on the 

programming header are the same pins as TX0 and RX0 on the H1 I/O 

expansion header. In Workshop it is possible to change the serial port being 

used by a ViSi-Genie program. Instructions for doing this are as follows.  

 

Under the File menu, select Options then select the Genie tab. 

 

 

 C 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 22 of 25   www.4dsystems.com.au 

 
For Picaso displays there are only two available serial ports – COM0 and 

COM1. To use COM1, click on the button next to it then click OK.  

 

 

 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs will now use COM1. Also, the TX and RX pins of the host 

shall now be connected to the RX and TX pins of COM1 instead of COM0. 

 

 
 

The Diablo16 processor has four serial ports – COM0, COM1, COM2, and 

COM3. The TX and RX pins of COM0 are fixed and are used for programming 

the processor. Again, COM0 is also the default serial port used by a ViSi-

Genie program. The TX and RX pins for COM1, COM2, and COM3, on the 

other hand, are ‘mappable’ – that is, they can be configured to be ‘mapped’ 

out to any (but not all) of the GPIO pins. The table below shows the GPIO 

pins that can be used as TX and RX pins for COM1, COM2, and COM3. This 

table is taken from the Diablo16 datasheet. 

 

 

 
 C 

 C 

75 

http://www.4dsystems.com.au/product/DIABLO16_OGM/


APPLICATION NOTES  4D-AN-00092 
 

 
Page 23 of 25   www.4dsystems.com.au 

 
 

Workshop, however, only provides the option of using COM1 as an 

alternative to COM0.  To use the GPIO pins PA13 and PA12 as RX and TX pins 

respectively, specify them under Diablo com1 Pins then click OK. 

 

 
 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs with a Diablo16 target display will now use COM1 with 

the specified TX and RX pins. Also, the TX and RX pins of the host shall now 

be connected to the specified RX and TX pins of COM1. If using a uLCD-

35DT for example, 

 

 
 

Consult the datasheet of your display for more information. 

Changing the Maximum String Length 

The host can dynamically write to the strings object of a ViSi-Genie program. 

The default maximum length of a character array that can be dynamically 

written to a strings object is 75 characters (excluding the overhead bytes). 

Worskhop provides an option for increasing this limit.  

Under the File menu, select Options then select the Genie tab. Here the 

maximum length is set to 200 characters. Click OK.  

 
 

 

 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 24 of 25   www.4dsystems.com.au 

 
 

Compile and download the program to the display. All subsequent ViSi-

Genie programs will now have this configuration. 

 

 

 

 

 

 

  C 

C 



APPLICATION NOTES  4D-AN-00092 
 

 
Page 25 of 25   www.4dsystems.com.au 

Proprietary Information 

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be 

copied or disclosed without prior written permission.  

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The 

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position 

with 4D Systems. 

All trademarks belong to their respective owners and are recognised and acknowledged. 

 

  Disclaimer of Warranties & Limitation of Liability 

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without 

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose. 

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. 

It is your responsibility to ensure that your application meets with your specifications. 

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages 

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be 

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages. 

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments 

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life 

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental 

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. 

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend, 

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or 

otherwise, under any 4D Systems intellectual property rights. 


	Description
	Content
	Application Overview
	Setup Procedures
	Program the Arduino Host
	Install the Library
	Modify the Library for the Arduino Due
	Open the Attached Arduino Sketch Files
	Understanding the Arduino Demo Sketch (w/o Message Logging)
	Include the Library Files
	Define the Serial Port to be Used
	The Acknowledgment Byte
	The Error-handling Routine
	Set the Timeout Limit
	Set the Baud Rate
	Reset the Arduino Host and the Display
	Let the Display Start Up
	Set the Screen Orientation
	Clear the Screen
	uSD Card Mount Routine
	Send a String

	Understanding the Arduino Demo Sketch (with Message Logging)
	Enable Message Logging
	Set the Baud Rate
	Displaying Returned Values
	The Error-handling Routine
	Final Output


	Connect the 4D Display Module to the Arduino Host
	Using the New 4D Arduino Adaptor Shield (Rev 2.00)
	Definition of Jumpers and Headers
	Default Jumper Settings
	Change the Arduino Host Serial Port
	Power the Arduino Host and the Display Separately

	Using the Old 4D Arduino Adaptor Shield (Rev 1)
	Connection Using Jumper Wires
	Changing the Serial Port of the Genie Program
	Changing the Maximum String Length

	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

