
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

Designer or ViSi Strings and

Character Arrays

DOCUMENT DATE: 27th APRIL 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00193

Page 2 of 12 www.4dsystems.com.au

 Description

This application note shows how string characters are stored in and

accessed from memory. This application is intended for use in the Workshop

4 – Designer environment. The 4DGL code of the Designer project can be

copied and pasted to an empty ViSi project and it will compile normally. The

code can also be integrated to that of an existing ViSi project.

This application note requires:

 Any of the following 4D Picaso and gen4 Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

uLCD-24PTU uLCD-32PTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series

gen4-uLCD-70D series
uLCD-35DT uLCD-43D series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16 display

modules as well.

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

for non-gen4 displays(uLCD-xxx)

 4D Programming Cable & gen4-PA, / gen4-IB / 4D-UPA

for gen4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 Any Arduino board with a UART serial port

 4D Arduino Adaptor Shield (optional) or connecting wires

 Arduino IDE

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4-uLCD-24D/
https://www.4dsystems.com.au/product/gen4-uLCD-28D/
https://www.4dsystems.com.au/product/gen4-uLCD-32D/
https://www.4dsystems.com.au/product/gen4-uLCD-35D/
https://www.4dsystems.com.au/product/gen4-uLCD-43D/
https://www.4dsystems.com.au/product/gen4-uLCD-50D/
https://www.4dsystems.com.au/product/gen4-uLCD-70D/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_43D/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

APPLICATION NOTES 4D-AN-00193

Page 3 of 12 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview ... 3

Setup Procedure ... 4

Create a New Project ... 4

Design the Project .. 4

The Function to(outstream) ... 4

Little Endian Order of Storage ... 5

Example Code – StringsBasics1.4dg .. 6

Accessing a Character in the String using Word-Aligned Pointers6

Print the Characters of a Word Element 7

Print a Low-byte Character 7

Print a High-byte Character 7

Replace a Low-byte Character 7

Replace a High-byte Character 7

Accessing a Character in the String using Byte-Aligned Pointers 8

Print a Character 8

Replace a Character 9

Run the Program .. 10

Proprietary Information ... 12

Disclaimer of Warranties & Limitation of Liability 12

 Application Overview

At the time of writing of this application note, there exists only one variable

data type in 4DGL. This is the var data type, which is a 16-bit signed integer

variable. Since it is 16-bit wide, the var variable is also a word. It is also

possible to declare an array of var or word variables. Each element of a var

variable array therefore is a 16-bit wide signed integer or a word.

There are no specific variable data types for character arrays and strings. In

4DGL, character arrays and strings are stored inside var variable arrays.

Since a character is one-byte wide, each element of a var variable array can

store two characters.

There are several ways of entering string data into a variable array, two of

which are using the functions “to(…)” (in combination with the function

“print(…)”) and “str_PutByte(…)”. Another one is direct assignment using

word-aligned pointers.

Likewise, there are several ways of accessing string data stored inside a word

array. One way is to treat the word array containing the string as it is – a

collection of word elements. Another way is to treat it as a region in memory

where a string is stored. The former requires the use of word-aligned

pointers, while the latter requires the use of byte-aligned pointers and the

string class functions.

This application note discusses and elaborates the concepts above through

examples.

APPLICATION NOTES 4D-AN-00193

Page 4 of 12 www.4dsystems.com.au

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Design the Project

The Function to(outstream)

There are several ways of assigning a string to a word array. One way is to

stream a literal string constant to the word array using the functions

“to(outstream)” and “print(…)”. To store the string “HELLO WORLD” for

instance, we write,

Note that we had to declare the word array “buffer” which has a size of 10.

This means that there are 10 word elements in the array. Each word element

can contain a pair of bytes. The total number of bytes that buffer can hold

is 20. To know the number of bytes that a word array can hold, simply

multiply the array size by two. To illustrate,

Character or byte capacity = array size X 2

The function “print(…)” then streams the characters of the literal string

constant “HELLO WORLD” to the word array buffer. Note that “HELLO

WORLD” will be automatically terminated with a NULL character.

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00193

Page 5 of 12 www.4dsystems.com.au

Little Endian Order of Storage

Inside a word array element there are two bytes of available memory – one

of which may be pertained to as the high byte and the other the low byte.

To illustrate using the word array “buffer”,

element buffer[0] buffer[1] buffer[2] buffer[3]

byte high low high low high low high low

element buffer[4] buffer[5] buffer[6] buffer[7]

byte high low high low high low high low

element buffer[8] buffer[9]

byte high low high low

When characters are streamed to a word array, the processor starts with

the first element (buffer[0] in this example). Inside the first element, the low

byte is filled first before the high byte (little endian order). After filling both

bytes of the first element, the processor proceeds to the second element

(buffer[1] in this example). This process is repeated until all of the characters

are saved. The string is then terminated with a NULL character. To illustrate,

element buffer[0] buffer[1] buffer[2] buffer[3]

byte high low high low high low high low

Char E H L L space O O W

Hex 45 48 4C 4C 20 4F 4F 57

element buffer[4] buffer[5] buffer[6] buffer[7]

byte high low high low high low high low

Char L R NULL D NULL NULL NULL NULL

Hex 4C 52 0 44 0 0 0 0

element buffer[8] buffer[9]

byte high low high low

Char NULL NULL NULL NULL

Hex 0 0 0 0

APPLICATION NOTES 4D-AN-00193

Page 6 of 12 www.4dsystems.com.au

Example Code – StringsBasics1.4dg

Below is a screenshot image of the project “stringsBasics1.4dg” attached to

this application note.

Again we declare the word array buffer, which has a size of 10. The word

variable n will be used for indexing into the word array.

The literal string constant “HELLO WORLD” is now streamed to buffer.

The while-wend loop eliminates the need for repetitive statements when

printing the content of the elements of a word array.

The above will print the values of all elements of the word array buffer (from

buffer[0] to buffer[9]). Each element value will be printed on a new line, and

the contents will be printed as hexadecimal vales. The section “Run the

Program” shows the output of the example code “stringsBasics1.4dg”.

Accessing a Character in the String using Word-Aligned Pointers

One way of accessing a character of a string saved to a word array is to

use a word-aligned pointer, such as that shown in line 16 of the code

“stringsBasics1.4dg”.

APPLICATION NOTES 4D-AN-00193

Page 7 of 12 www.4dsystems.com.au

Here buffer is actually a pointer that holds the starting address of the

memory location of the actual word array, and n is the offset of the

pointer into that array.

Print the Characters of a Word Element

The line

would print “4548”.

The line

would print “4C4C”.

Print a Low-byte Character

To print only the low-byte character, we use the number format specifier

“[HEX2]” with the function “print(…)”. This limits the length of the printed

value to two hexadecimal digits.

Print a High-byte Character

To print only the high-byte character, we perform a bit-shifting operation

then print the result up to two hexadecimal digits only.

Replace a Low-byte Character

With each increment of n, the pointer offsets into the next word element

of the array, hence the term “word-aligned”. To change the first character

of the string from ‘H’ to ‘X’ using a word-aligned pointer, we could write,

Since we know that ‘H’ is stored in the low byte of buffer[0], we clear the

low byte of buffer[0] while at the same time preserving the high byte by

ANDing buffer[0] with 0xFF00. Then we set the value of the low byte

while preserving the value of the high byte by ORring buffer[0] with

0x00nn, where nn is the desired value.

Replace a High-byte Character

To replace the space character with a ‘+’, we could write,

APPLICATION NOTES 4D-AN-00193

Page 8 of 12 www.4dsystems.com.au

To replace the last character (‘D’) with ‘A’, we could write,

Here a literal constant word value is directly assigned to buffer[5]. This

shorthand method can be also be used when assigning a character to the

high or low byte of a word element, provided of course that the other

byte is known.

To print the new value of the string, we write,

The final value of the string should be “XELLO+WORLA”. Open the

attached Designer project “stringsBasics1b.4dg” to see the complete

code for this section (Accessing a Character in the String using Word-

Aligned Pointers).

Accessing a Character in the String using Byte-Aligned Pointers

As you may have already observed in the previous section, accessing a

character inside a string stored in a word array using a word-aligned

pointer is not straightforward. Note also that there are no data types (as

of the time of writing of this application note) specific for characters (or

other one-byte wide variables), such that we had to deal with characters

using word-aligned pointers. The string class functions in 4DGL allow us

to handle strings in an easier (or the normal) way, as will be shown in

the following discussions.

Print a Character

Assuming that the word array buffer now contains the string “HELLO

WORLD”, we first need to declare a word variable ptr.

Then we assign to ptr the starting address of the string stored in the

word array buffer by writing

The word variable ptr now points to the address of letter ‘H’, which is

the first character of the string in the word array buffer. To access a

character we can use str_GetByte(…), which is another 4DGL string

class function. For instance, to print ‘H’ in hexadecimal, we write,

To print the character as it is we write,

Note the difference between the format specifiers.

APPLICATION NOTES 4D-AN-00193

Page 9 of 12 www.4dsystems.com.au

To print the seventh character, we write,

Note that offsetting the pointer ptr by 6 advances it to the address of the

seventh character. Offsetting ptr by 1 advances it to the address of the

second character or byte, hence the term “byte-aligned”. Compare this

to the “ordinary” word-aligned pointers of the previous section, which

advance by increments of two bytes or one word when being offset by a

certain value. Note that grouping of the characters of the string by pairs

and performing masking and bit-shifting were not needed when

accessing the characters. Lastly, note also that we didn’t have to worry

about the little-endian order of storage of the string inside the word

array buffer.

Replace a Character

To put a character into a string, we use the function “str_PutByte(…)”.

To replace the first character in buffer with ‘X’ for example, we write,

To replace the space character with ‘+’ we write,

To replace ‘D’ with ‘A’ we write,

To print the modified string, we could write

or, since we have a byte-aligned pointer, we could write,

The Designer project for this section (Accessing a Character in the String

using Byte-Aligned Pointers) is “stringsBasics2.4dg”.

APPLICATION NOTES 4D-AN-00193

Page 10 of 12 www.4dsystems.com.au

 Run the Program

For instructions on how to save a Designer project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as

examples, but the procedure is the same for other displays.

After compiling the code “stringsBasics1.4dg” and uploading the program

to the display module, the output should look like as shown below.

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00193

Page 11 of 12 www.4dsystems.com.au

After compiling the code “stringsBasics1b.4dg” and uploading the program

to the display module, the output should look like as shown below.

After compiling the code “stringsBasics2.4dg” and uploading the program

to the display module, the output should look like as shown below.

APPLICATION NOTES 4D-AN-00193

Page 12 of 12 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

