

ViSi Genie Pin Input and Output for Diablo16 Display Modules

DOCUMENT DATE: DOCUMENT REVISION: 15th APRIL 2019 1.0

WWW.4DSYSTEMS.COM.AU

Description

This application note provides a first hands-on example with ViSi-Genie and describes all the steps related to a project.

Before getting started, the following are required:

- Workshop 4 has been installed according to the document Workshop 4 Installation;
- The user is familiar with the Workshop 4 environment and with the fundamentals of ViSi-Genie, as described in Workshop 4 User Guide and ViSi-Genie User Guide;
- When downloading an application note, a list of recommended application notes is shown. It is assumed that the user has read or has a working knowledge of the topics discussed in these recommended application notes.
- A breadboard, two 1 kilo-ohm resistors, a 10 kilo-ohm resistor, two LEDs, a 100 nano-Farad ceramic capacitor, and jumper wires

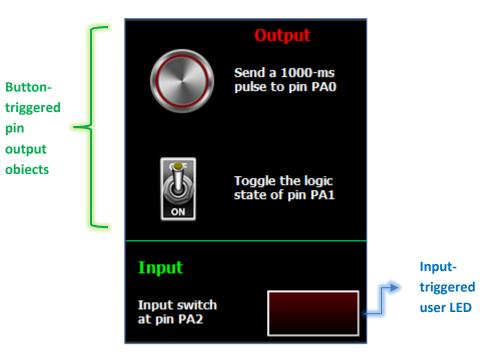
Content

Description	2
Content	2
Application Overview	3
Setup Procedure	4
Create a New Project	4
Create a New Project	4
Design the Project	5
Adding a Pin Output (Pulsed) Object	5
Naming of Objects	6
Adding a Momentary 4D Button	6
Changing the Size of the Button	7
Configuring a 4D Button to control a Pin Output Object	8
Configuring a Pin Output Object to Report an Event	8
Adding a Pin Output (non-Pulsed) Object	9
Adding a Toggle 4D Button	10
Adding a Pin Input Object	13
Adding a User LED	14
Configuring a Pin Input to Control a User LED	15
Configuring a User LED to Report an Event	15
Completing the Form	16
Build and Upload the Project	

Create a Circuit for Testing the Project	17
Schematic Diagram	18
Pin Configuration of the Display Module	18
Identify the Messages	19
Use the GTX Tool to Analyse the Messages	19
Launch the GTX Tool	19
The Pin Output Object	20
Report Event	20
Control a Pin Output Object using the GTX Tool	21
Polling a Pin Output Object	22
The Pin Input Object	23
Report Event	23
Proprietary Information	25
Disclaimer of Warranties & Limitation of Liability	25

Application Overview

It is often difficult to design a graphical display without being able to see the immediate results of the application code. ViSi-Genie is the perfect software tool that allows users to see the instant results of their desired graphical layout with this large selection of gauges and meters (called objects or widgets). The user can simply click on the desired widget to select it and click on the simulated display to place the widget. Shown below are the pin input and pin output widgets.


I/O WIDGETS

Pin Input Pin Output

With the addition of these I/O (Input/Output) widgets in Workshop, the user now has the option of utilizing the GPIO (General Purpose Input and Output) pins of the display module in the ViSi-Genie environment. The user can read the status of a specific pin when it's configured as a pin input object. Conversely, the user can control the state of a pin when it's configured as a pin output object. It is not advisable however to configure a pin as both an input and an output as undesirable results may occur.

The project developed in this application note discusses the basics of using pin input and pin output objects. As shown in the figure to the right, the project uses buttons to trigger the pin output objects. Pin output objects can either be pulsed or non-pulsed. For the pin input object, a user LED is used as an indicator. The pin input and output objects are 'invisible' and they always reside in Form0.

A simple circuit is needed for testing this project. The section **"Create a Circuit for Testing the Project"** shows the schematic diagram for the circuit and how to connect it to the display module.

The section **"Identify the Messages"** discusses the format of I/O-widgetrelated messages using the GTX Tool in Workshop. An understanding of this section is essential for users who intend to interface the display to an external host.

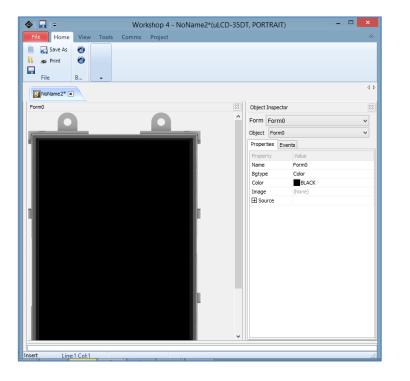
Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie project, and how to change the target display, kindly refer to the section "**Setup Procedure**" of the application note:

<u>ViSi Genie Getting Started – First Project for Diablo16 Displays</u> (for Diablo16).

Create a New Project

Create a New Project


For instructions on how to create a new ViSi-Genie project, please refer to the section "**Create a New Project**" of the application note

<u>ViSi Genie Getting Started – First Project for Diablo16 Displays</u> (for Diablo16).

Design the Project

Everything is now ready to start designing the project. **Workshop 4** displays an empty screen, called **Form0**. A **form** is like a page on the screen. A form can contain **widgets** or **objects** like trackbars, sliders, displays, keyboards, and others.

Below is an empty form.

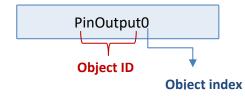
Adding a Pin Output (Pulsed) Object

To add a pin output object, go to the I/O pane and click on the pin output icon.

Backgrounds	Buttons	Digits	Gauges	I/O	(1
🗨 💐	*				

Click on the WYISWYG screen to place the object. The pin output object always resides in Form0. Pin output and pin input objects reside in Form0, but they are accessible from any other form of the project. The object inspector lists all the default properties of the newly-added pin output object named PinOutput0.

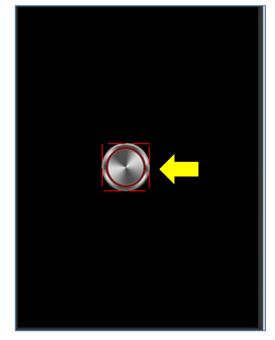
Object Inspector		
Form Form0	~	
Object PinOutput0 v		
Properties Events		
Property	Value	
Name	PinOutput0	
IdleState	Low	
PulseDuration	10	
Pin	PAO	


The property **IdleState** defines the logic state of the pin when it's inactive. When **IdleState** is "**Low**", the active state therefore is "**High**". The property **PulseDuration** defines the length of time in milliseconds for which the pin is maintained active. With these settings therefore, when PinOutuput0 is triggered, pin PAO will be made active for 10 milliseconds only, then made inactive or idle again until the next occurrence of the triggering event. In other words, a 10-millisecond-pulse is sent to pin PAO when PinOutputO is triggered. Increase the pulse duration to 1000 milliseconds.

Note that when the value of **PulseDuration** is set to zero, the pin maintains its current state indefinitely, i.e., it stays active (High in this example) until it is triggered to go idle (Low in this example). Conversely, it stays idle until it is triggered to go active.

Naming of Objects

Naming is important to differentiate between objects of the same kind. For instance, suppose the user adds another pin output object to the WYSIWYG screen. This object will be given the name PinOutput1– it being the second pin output object in the program. The third pin output object will be given the name PinOutput2, and so on. An object's name therefore identifies its kind and its unique index number. It has an ID (or type) and an index.



Adding a Momentary 4D Button

A momentary 4D button is now added to be used for triggering PinOutputO. A momentary button is enabled when pressed and disabled upon release. Under the buttons pane, select the ButtonO1 icon.

Click on the WYSIWYG screen to place the object.

Changing the Size of the Button

The object inspector lists all the properties of the newly-added 4D button object named 4Dbutton0. Change the button size to "64x64" (pixels). To learn more about 4D buttons, refer to <u>ViSi-Genie 4D Buttons</u>.

Object Inspec	tor	8
Form Form0 v		
Object 4Dbu	itton0	~
Properties E	vents	
Property	Value	2
Size	64x64	v
Style	32x32	
Тор	48x48 64x64	
Туре	Scaled	

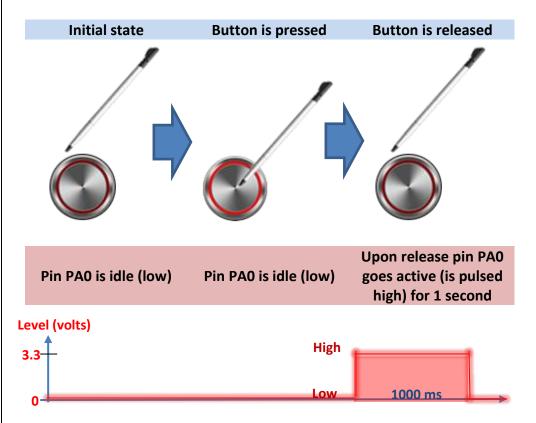
4Dbutton0 now has the following properties. Note that a 4D button is a momentary button by default.

Object Inspecto	r
Form Form0	
Object 4Dbutton	0 ~
Properties Event	ts
Property	Value
Name	4Dbutton0
Height	64

Left	24
Matrix	-1
Momentary	Yes
Size	64x64
Style	Red
Тор	28
Туре	Button01
Width	64

Configuring a 4D Button to control a Pin Output Object Go to the Events tab and click on the ellipsis dots.

Object Inspec	tor	8
Form Form	10	~
Object 4Dbu	utton0	~
Properties	Events	
Event	Handler	
OnChanged		


The On event selection window appears. Choose PinOutput0Set then click OK.

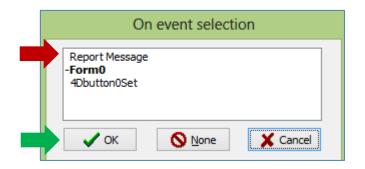
On event selection	
Report Message -Form0 PinOutput0Set	
✓ OK S None Cancel	

The OnChanged event property of 4Dbutton0 is updated accordingly.

Object Inspe	ector	8
Form Form	0	~
Object 4Dbut	tton0	~
Properties E	vents	
Event	Handler	
OnChanged	PinOutput0Set	

When the program runs, pressing and releasing 4Dbutton0 will send a 1000millisecond-pulse to pin PA0. To illustrate:

Configuring a Pin Output Object to Report an Event


PinOutput0 can be configured to report a message to an external host controller when its status has changed. In the object inspector, select PinOutput0.

Object Inspector			
Form	Form0	~	
Object	PinOutput0	¥	
Properti	4Dbutton0 Form0		L
Event	PinOutput0		

Go to the Events tab and click on the ellipsis dots of the OnChanged event.

Object Inspector			
Form For	m0	~	
Object Pin(Dutput0	¥	
Properties	Events		
Event	Handler		
OnChanged			

The On event selection window appears. Choose "**Report Message**" and click OK.

Adding a Pin Output (non-Pulsed) Object

Go to the I/O pane and click on the pin output icon.

						_
Backgroun	nds (I	Buttons	Digits	Gauges	I/O	
*	•					

Click on the WYISWYG screen to place the object. The object inspector lists all the default properties of the newly-added pin output object named PinOutput1.

Object Inspector					
Form Form0	¥				
Object PinOutput1 V					
Properties Events					
Property	Value				
Name	PinOutput1				
IdleState	Low				
PulseDuration	10				
Pin	PA0				

Change the value of PulseDuration to "0" and Pin to PA1. Again, when the value of **PulseDuration** is set to zero, the pin maintains its current state indefinitely.

Object Inspec	bject Inspector		
Form Form0		~	
Object PinOut	out1	~	
Properties Eve	ents		
Property	Value		
Name	PinOutput1		
IdleState	Low		
PulseDuration	0		
Pin	PA1		

PinOutput1 is now a non-pulsed pin output object unlike PinOutput0. Configure PinOutput1 to report a message when its status has changed.

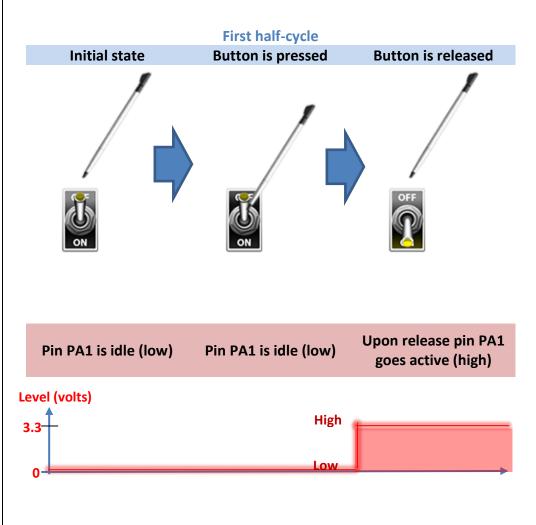
Object Inspector						
Form Form	~					
Object Pin0	Dutput 1	~				
Properties	Properties Events					
Event	Handler					
OnChanged	Report Message					

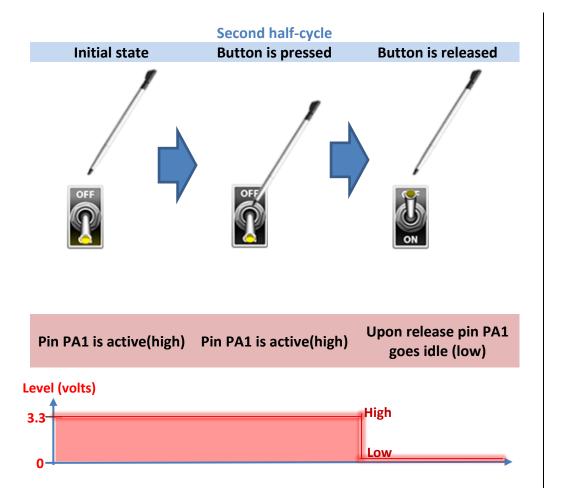
and-release is needed to disable it. Under the buttons pane, select the Toggle02 icon.

Backgrounds	Buttons	Digits	Gauges	I/O	Inputs	Labels	Primit	ives
🕙 🖀	Þ	\odot	0	-	(00 00)	@	8	

Click on the WYSIWYG screen to place the object. Change the **size** to **64x64** and set the value of the **OnChanged** event property accordingly. Set "**Momentary**" to "**No**". Shown below are the properties of 4dbutton1.

Object Inspector					
Form Form0					
Object 4Dbut	ton 1				
Properties Ev	vents				
Property	Value				
Name	4Dbutton 1				
Height	64				
Left	28				
Matrix	-1				
Momentary	No				
Size	64x64				


Style		Yellow_r			
Тор		144			
Туре		Toggle02			
Width		64			
Object Insp	Object Inspector				
Form Form	Form Form0				
Object 4Db	utton	1	~		
Properties	Event	s			
Event	Hand	ler			
OnChanged	PinOu	utput 1Set			


Adding a Toggle 4D Button

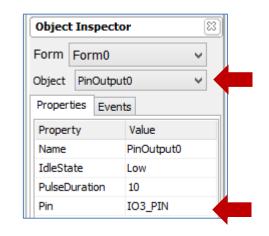
A toggle 4D button object is added to trigger PinOutput1. A toggle button is enabled when pressed, and stays enabled when released. Another pressThe WYSIWYG screen is updated accordingly.

When the program runs, 4dbutton1 will toggle the logic state of pin PA1. To illustrate:

Notes:

The actual duration of a pulse from a pulsed pin output object is not exactly equal to the value specified by the property **PulseDuration;** it is slightly longer.

Multiple pin output objects can use the same pin. It is the user's responsibility to manage such usage in a reasonable way.


It makes sense to link a momentary button to a pulsed output pin object only and similarly to link a toggled button to a non-pulsed output pin object only. Of course, when it becomes necessary to do the non-apparent, the user can try experimenting with other combinations.

For some display modules such as the uLCD-32PTU, several of the GPIO pins have a special function. For instance, on page 8 of the datasheet for the uLCD-32PTU (a display module's datasheet can be downloaded from its product page at <u>www.4dsystems.com.au</u>) it says:

IO3 pins (Peripheral Supply pin):

IO3 is controllable via the processor, or via the H2 Interface pin driven by an external circuit. If IO3 is set as OUTPUT and driven HIGH the μ SD and Display are enabled, and disabled when driven LO. Set as INPUT to use an external circuit to drive this pin.

Therefore a program may not run on a uLCD-32PTU when the user has added a pin output object with the value of the property "**Pin**" set as "**IO3_PIN**", as shown below.

This is because at the start of the program, pin IO3_PIN is already set to low (**IdleState**). This will disable the display and the uSD card. The user has no way of driving the pin high again since the display is turned off. Due to this, it is therefore strongly recommended for users to know the functions of the GPIO pins of a display module first before using them. Again, a display module's datasheet can be downloaded from its product page at www.4dsystems.com.au.

Adding a Pin Input Object

To add a pin input object, go to the I/O pane and click on the pin input icon.

Backgrounds	Buttons	Digits	Gauges	I/O	
🗨 💐	×				

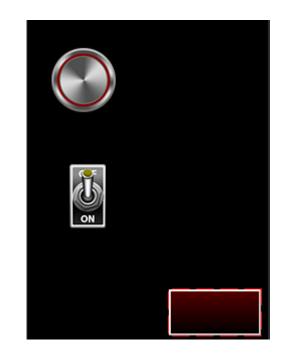
Click on the WYISWYG screen to place the object. The object inspector lists all the default properties of the newly-added pin input object named PinInputO. A pin input object (like a pin output object) will always reside in FormO.

Object Inspector						
Form Form0 v						
Object PinInput0 V						
Properties Events						
Property	Value					
Name	PinInput0	1				
IdleState	Low					
Pin	PA0					

Since pin PAO was already used for PinOutputO, change the value of **Pin** to **PA2**.

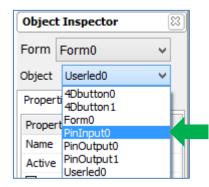
Object Inspec	tor	83
Form Form	~	
Object PinIn	put0	~
Properties E	vents	
Property	Value	
Name	PinInput0	
IdleState	Low	
Pin	PA2	~

Object Inspecto	r 🖾	Left	140
		OutlineColor	BLACK
Form Form0	~	OutlineWidth	0
Object Userled	v ot	PaletteEx	
Dreparties r		High 1	dRed
Properties Ev	ents	High2	RED
Property	Value	Low1	0x000051
Name	Userled0	Low2	BLACK
Active	No	Тор	268
🛨 Bevel		Visible	Yes
Height	48	Width	94


The updated appearance of the WYSIWYG screen is shown below.

Adding a User LED

To add a user LED, go to the Digits pane and select the user LED icon.


_								
	Buttons	Digits	Gauges	Primitives	Inputs	Labels	System/Media	
	00	00						
		90	• •					

Click on the WYSIWYG screen to place the object. It can be dragged to any location and resized to the desired dimensions. The properties can be edited in the Object Inspector. UserledO has the following properties:

Configuring a Pin Input to Control a User LED

Now Userled0 can be used to indicate the status of pin PA2. In the object inspector, select PinInput0.

Go to the Events tab and click on the ellipsis dots of the OnChanged event.

Object Ins	pector	8
Form Form	m0	~
Object PinI	¥	
Properties	Events	
Event	Handler	
OnChanged		

The On event selection window appears. Select Userled0Set and click OK.

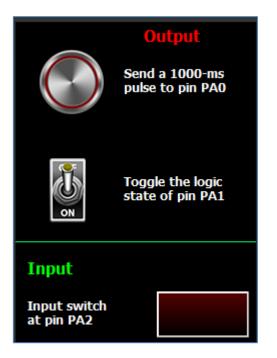
On event selection
Report Message -Form0 4Dbutton0Set 4Dbutton1Set Form0Set PinOutput0Set PinOutput1Set Userled0Set
OK S None Cancel

When the program runs, the logic state of pin PA2 will dictate the state of Userled0.

Configuring a User LED to Report an Event

Userled0 can be configured to report a message when its status has changed. Select Userled0 on the WYSIWYG screen and go to the Events tab of its object inspector. Configure the OnChanged event as shown below.

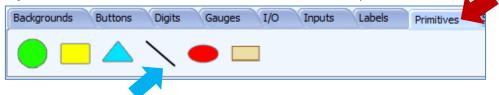
Object Insp	ector	8
Form Form	n0	~
Object User	~	
Properties	Events	
Event	Handler	
OnChanged	Report Message	


Notes:

Multiple pin input objects can use the same pin. It is the user's responsibility to manage such usage in a reasonable way.

Do not set a pin to both input and output as undesirable results may occur.

Completing the Form


Static text objects are now added to make the project more presentable.

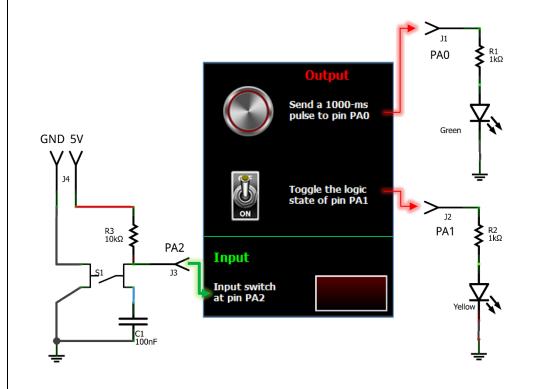
The static text widget icon is found under the **Labels** pane.

Adding a static text object and experimenting with its properties are now left to the user as an exercise. The horizontal line across the form is a line object, the icon of which is found under the **Primitives** pane.

LineO of the demo project has the following properties.

Object Ins	Object Inspector				
Form For	m0	~			
Object Line	20	¥			
Properties	Events				
Property	Valu	Je			
Name	Line	0			
Color	<u> </u>	SPRINGGREEN			
Pattern	Solid	ł			
X1	0				
X2	240				
Y1	219				
Y2	219				

Build and Upload the Project


For instructions on how to build and upload a ViSi-Genie project to the target display, please refer to the section "**Build and Upload the Project**" of the application note

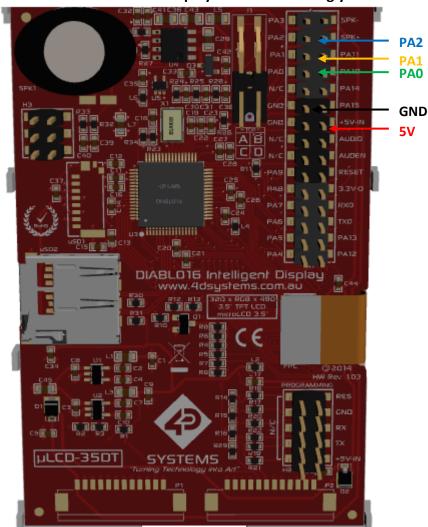
ViSi Genie Getting Started – First Project for Diablo16 Displays (for Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly used as examples, but the procedure is the same for other displays.

Create a Circuit for Testing the Project

Since the project involves the use of a pin input and two pin output objects, it is therefore necessary to create a circuit to test it. For the pin output objects, two LEDs are used to indicate the status of the pins used. For the pin input object, a simple pushbutton switch is used. The following sections now present the hardware part of the project.

Schematic Diagram GND 5 V PA0 PA1 J2 J4 J1 R2 1kΩ R1 1kΩ R3 10kΩ PA2 Yellow Green J3 **S**1 C1 100nF Made with 🗗 Fritzing.org


Pin Configuration of the Display Module

The pins PAO, PA1, and PA2 of the uLCD-35DT can be accessed from the expansion header H1. The datasheet for the uLCD-35DT can be downloaded from its <u>product page</u>. The pin configuration for header H1 is shown on page 6 (for datasheet revision 1.1).

H1 Pinout (Expansion Header)					
Pin	Symbol	I/O	Description		
1	PA3	1/0/A	General Purpose I/O pin with Analog Capability. This pin is 5.0V tolerant when		
1	PAS	1/0/A	used as a Digital, with a range of 0-3.3V when used as an Analog Input		
2	SPK-	ο	Used in conjunction with SPK+, this is used to connect an external speaker for application that require a larger more powerful speaker than what is supplier on-board the uLCD-35DT. Disconnect the on-board speaker when using this.		
3	PA2	I/O/A	General Purpose I/O pin with Analog Capability. This pin is 5.0V tolerant when used as a Digital, with a range of 0-3.3V when used as an Analog Input		
4	SPK+	0	Used in conjunction with SPK-, this is used to connect an external speaker for application that require a larger more powerful speaker than what is supplier		
			on-board the uLCD-35DT. Disconnect the on-board speaker when using this.		
5	PA1	I/O/A	General Purpose I/O pin with Analog Capability. This pin is 5.0V tolerant when used as a Digital, with a range of 0-3.3V when used as an Analog Input		
6	PA11	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
7	PAO	I/O/A	General Purpose I/O pin with Analog Capability. This pin is 5.0V tolerant when used as a Digital, with a range of 0-3.3V when used as an Analog Input		
8	PA10	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
9	N/C	-	Not Connected		
10	PA14	1	General Purpose Input Only. This pin is 5.0V tolerant.		
11	GND	Р	Supply Ground		
12	PA15	1	General Purpose Input Only. This pin is 5.0V tolerant.		
13	GND	Р	Supply Ground		
14	+5V	Р	Main Voltage Supply +ve input pin. Reverse polarity protected. Range is 4.0V to 5.5V, nominal 5.0V. (Not connected to H2 +5V, separated with diodes)		
15	N/C	-	Not Connected		
16	AUDIO	1/0	PWM Audio output from Module, or Audio Input to Amplifier, determined by J		
17	N/C	-	Not Connected		
18	AUDENB	1/0	External Amplifier enable pin, to control an external amplifier from the module or control the on board Amplifier from an external source.		
19	PA9	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
20	RESET	1	Master Reset, Active Low (GND), See H2 Pin 9 Description		
21	PA8	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
22	+3.3V_OUT	Р	3.3V Output, limited to approximately 100mA, for external use.		
23	PA7	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
24	RXO	1	Asynchronous serial port 0 receive pin. COM0		
25	PA6	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
26	TXO	0	Asynchronous serial port 0 transmit pin. COM0		
27	PA5	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
28	PA13	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
29	PA4	1/0	General Purpose I/O. This pin is 5.0V tolerant.		
30	PA12	1/0	General Purpose I/O. This pin is 5.0V tolerant.		

Continued overleaf...

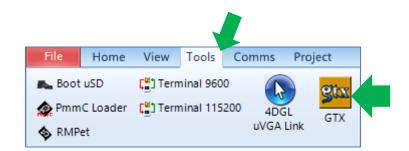
I = Input, O = Output, P = Power, A = Analog Input

Connect the circuit to the display module accordingly.

Note:

For gen4-Displays, please refer to your programming adaptor's datasheet for the correct location of the GPIO pins

Identify the Messages

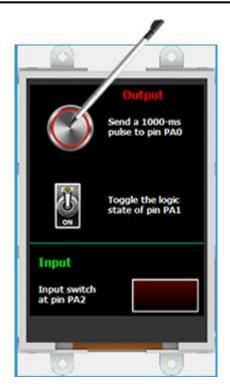

The display module is going to receive and send messages from and to an external host. This section explains to the user how to interpret these messages. An understanding of this section is necessary for users who intend to interface the display to a host. The <u>ViSi Genie Reference Manual</u> is recommended for advanced users.

Use the GTX Tool to Analyse the Messages

Using the GTX or **Genie Test eXecutor** tool is the first option to get the messages sent by the screen to the host. Here the PC will be the host. The GTX tool is a part of the Workshop 4 IDE. It allows the user to receive, observe, and send messages from and to the display module. It is an essential debugging tool.

Launch the GTX Tool

Under the Tools menu click on the GTX tool button.


A new window appears showing all the objects of the project.

gia				Genie T
Port: COM38 V	Reset on	open 🍡 Dis	sconnect	Control 7
	PinInputs Query Idle Query Button 1	UserLeds Query Set	PinOutpu Query Idle Active Idle	uts Query Idle Active Idle

The Pin Output Object

Report Event

When the program starts, press and release 4Dbutton0 on the display module screen. Linked to 4Dbutton0 is PinOutput0. Remember that PinOutput0 was configured earlier to report a message when its status has changed.

Upon releasing 4Dbutton0, the green LED should light up for one second (approximate). Also, a message is sent from the display module to the PC. The message is displayed on the white area on the right part of the GTX Tool window.

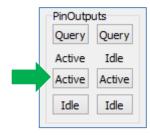
4Dbutton Change 09:03:24.481 [07 1E 00 00 00 19]

The actual message bytes are those inside the brackets. These values are in hexadecimal. The figure preceding the actual message is the computer time

at which the message is sent. A label is also included to tell the observer what the message represents.

The message received is formatted according to the following pattern:

Command	Object Type	Object Index	Value MSB	Value LSB	Checksum
07	1E	00	00	00	19
REPORT_EVENT	4D button	first	0x0000		


The message is from 4Dbutton0, and it contains the hexadecimal value "0x0000". The value (MSB and LSB) contained in a message coming from a button reflects its most current status. A momentary button normally sends the value "0x0000" only, which means that it has just been released (i.e., its latest state is "disabled").

Also, note that although it is PinOutputO that was configured to report a message when its status has changed, the GTX tool window message area labels the message as coming from a 4D button. This is because only input objects such as a 4D button can initiate an event. Output objects such as a pin output cannot initiate an event. To learn more about the input-output

classification of Genie objects, refer to section 7 of the <u>ViSi-Genie User</u> <u>Guide</u>.

Control a Pin Output Object using the GTX Tool

In the GTX tool window, click on the "Active" button shown below.

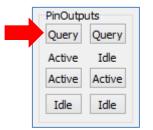
Note that the green LED lights up for one second. Also, the GTX tool window message area displays:

- in green the messages sent to the display module
- and in red the messages received from the display module

Set PinOutput Value 09:29:45.863 [01 1C 00 00 01 1C] ACK 09:29:45.891 [06] The message sent is formatted according to the following pattern:

Command	Object Type	Object Index	Value MSB	Value LSB	Checksum
01	1C	00	00	01	1C
WRITE_OBJ	Pin output	First	0x0001		

The message stands for "Write to the first pin output object on the display module the value **0x0001**".


ACK = 0x06 as shown below

ACK 09:29:45.891 [06]

is an acknowledgment from the display module which means that it has understood the message.

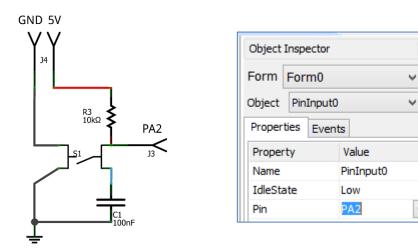
Polling a Pin Output Object

If a pin output object was not configured to report a message when its status has changed, it is still possible to know its current status by polling. To do this, click on the Query button.

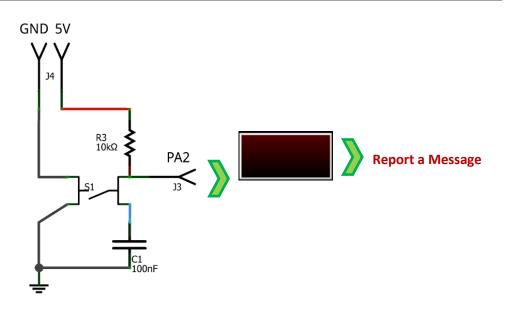
Messages are sent to and received from the display module.

Request PinOutput Value 09:31:50.079 [00 1C 00 1C] PinOutput Value 09:31:50.110 [05 1C 00 00 00 19]

The messages are formatted according to the following pattern:


Command	Object Type	Object Index	Value MSB	Value LSB	Checksum
00	1C	00	-	-	1C
READ_OBJ	Pin output	First	N/A		
05	1 C	00	00 00		19
REPORT_OBJ	Pin output	First	0x0000		

The host sends a READ_OBJ command specifically asking for the value or status of the first pin output object. The display module then responds with the value of that pin output object.


The Pin Input Object

Report Event

Looking at the pushbutton switch circuit, the voltage level at pin PA2 when the switch is open is 5 volts (HIGH). When the switch is closed, the voltage at pin PA2 goes down to 0 volt (LOW).

Userled0 is linked to PinInput0. Also remember that Userled0 was configured earlier to report a message when its status has changed. To illustrate:

When the pushbutton is switched on and then off, the following messages are displayed on the GTX tool window.

```
PinInput Change 10:00:05.095 [07 1D 00 00 00 1A]
PinInput Change 10:00:05.816 [07 1D 00 00 01 1B]
```

The object ID of a pin input is 0x1D. See section 3.3 of the <u>ViSi Genie</u> <u>Reference Manual</u> for a full list of object IDs. The user can also poll the display for the current status of the pin input object.

The following messages are displayed on the GTX tool window.

¥

Request PinInput Value 10:03:48.013 [00 1D 00 1D] PinInput Value 10:03:48.045 [05 1D 00 00 01 19]

Again, note that although it is Userled0 that was configured to report a message when its status has changed, the GTX tool window message area labels the message as coming from a pin input object. A pin input object is classified as an input; a user LED is classified as an output.

Communication between a 4D display module programmed with a ViSi-Genie application and an external host controller must follow the ViSi-Genie Communications Protocol, which is defined in the <u>ViSi Genie Reference</u> <u>Manual</u>.

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.