
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

Designer or ViSi I2C Connection
to Wii Nunchuk

DOCUMENT DATE: 15th May 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 2 of 12 www.4dsystems.com.au

 Description

This Application note is intended to demonstrating to the user the set-up,

initialization and operation of the built-in I2C communications port of the PICASO

display modules. This application is intended for use in the 4D Workshop 4 –

Designer environment. The tools needed includes the following;

Before getting started, the following are required:

 Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-32PTU uLCD-43(P/PT/PCT)
uLCD-28PTU uLCD-32WPTU uVGA-III

and other superseded modules which support the Designer

and/or ViSi environments.

 4D Programming Cable or µUSB-PA5

 Workshop 4 IDE (installed according to the installation

document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read

or has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description ... 2

Content .. 2

Application Overview .. 3

Setup Procedure ... 3

Create a New Project .. 3

Design the Project ... 4

The Include Section .. 4

The main program ... 4

The Display Screen Setup .. 4

The repeat-forever detect loop ... 4

The sub-routines .. 5

Communication initialization sub-routine - Init() 5

The request for data sub-routine - request() 7

The receive data sub-routine – receive() 7

Editing the analogue and accelerometer data –edit() 8

The IF conditional loops .. 9

Drawing a colour filled circle using the analogue data 9

Drawing a colour filled circle using the accelerometer x/y data 9

When no buttons and both buttons are pressed 9

Running the Program .. 10

Proprietary Information .. 12

http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 3 of 12 www.4dsystems.com.au

Disclaimer of Warranties & Limitation of Liability 12

Application Overview

This Application note is intended to demonstrating to the user the set-up,

initialization and operation of the built-in I2C communications port of the PICASO

Embedded Graphics Processor. For this project a Wii Nunchuk was utilized as a

slave device. Data output that contains the slave device’s analogue output and

accelerometer output were read using I2C connection.

This application note also intends to explain the functionality and working of I2C,

as well as some sample code that explains how I2C is implemented. Remember that

the PICASO Inter-Integrated Circuit can only function as a master device.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 4 of 12 www.4dsystems.com.au

Design the Project

This will be presented in a sectional manner so as not to create confusion with the

project. For an in-depth detail of the functions used in this application note please

refer to the PICASO Internal Functions Reference Manual and 4D Graphics

Language Programmer’s Reference Manual.

The Include Section

This project starts with the identification of the platform being used as declared by

the #platform function. Also a colour related include file is added using the # inherit

statement. It is followed by the declaration of constants and global variable which

will be used in this application.

The main program

The main program for this projects contains two sections: the initialization of the

screen and the repeat-forever loop that shall be continuously run by the processor.

In the sample program, several sub-routines are called in to perform a particular

function. These functions include initialization of the I2C communication of the

PICASO to the Wii Nunchuk I2C port, the reception of data sub-routine and an

additional sub-routine to convert the data received to fit a certain segment of the

screen for demonstration purposes. Details on the sub-routines will be presented

in the succeeding sections of this document.

The Display Screen Setup

Aside from the assisted manner of setting up the screen mode of the display

module, one of the PICASO internal function is also capable of doing so. The

gfx_ScreenMode() function can set the screen to either a landscape or a portrait

orientation or their reversed orientation.

As part of the presentation in this application two other functions are added before

the repeat-forever loop. The gfx_Cls() statement is used to clear the screen and

subsequently, the delay of 100 milliseconds is inserted using the function pause().

The repeat-forever detect loop

The next segment of the program is the repeat-forever loop. This loop generally

contains all the routines that would be run by the processor endlessly. For this

program, the repeat-forever repeatedly calls on several sub-routines that were

executed. Sub-routines related to I2C slave device initialization, the data

acquisition from the slave device, and conditional loops are contained in the repeat

forever.

http://www.4dsystems.com.au/product/PICASO/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 5 of 12 www.4dsystems.com.au

This group of statements presents the repeat-forever segment of the application

program. A brief explanation of the statements included shall be presented in the

next sections.

The sub-routines

A good practice in avoiding confusion and reducing the codes placed under the

main program is to use sub-routines. These sub-routines can be called upon directly

and executed.

Referring to the statements above, we would notice that four sub-routines are

called in succession. Each time a sub-routine is called in the processor executes the

statements included therein. Sub-routines can be written to return particular

global variable values.

Communication initialization sub-routine - Init()

Establishing communications over the I2C port requires several important

information. These information includes the initialization procedure required by

the slave device.

Initializing the PICASO I2C port to work with a slave device would need the slave

address ID, register addresses and the data that is needed to be written to the slave

device’s register address.

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 6 of 12 www.4dsystems.com.au

Looking at the statements above, the initialization start with opening the I2C port

to a particular speed. The available speed speeds of transfer for the I2C are 100

KHz, 400 KHz and 1MHz. The PICASO embedded graphics processor can only

operate as an I2C master. Hence, all other device which will connect to the I2C must

be configured to be slave devices.

The statements displayed above means that the first step to perform is opening

the I2C port using a particular communication speed and then initiate a ‘start’

condition. After the initiation of the start condition, send to the slave device its

write address. The slave write address is 0xa4 while the read address is 0xA5 in

hexadecimal.

Wii Nunchuk I2C device address

1 0 1 0 0 1 0 Read : 1
Write : 0

Sending a ‘write device address’ to the slave would result to a hexadecimal value

equivalent to 0xA4 and subsequently, a ‘read device’ will be equal to 0xA5. Slave

devices have their own register addresses that are inherent to themselves. These

registers, when written with a particular data shall perform a particular task. From

the statements pasted on the previous column, we can see that for the initialization

of the Wii Nunchuk a couple of hexadecimal are needed to complete the

handshaking process. Data are written in right after the register address is

identified. Referring to the statements on the left column the register 0xF0 is

written with the 0x55 data, likewise the 0xFB register is written with the 0x00.

Figuratively, we can use the flow chart below to summarize the handshake

initiation for the PICASO and the Wii Nunchuk.

open I2C
•Specify communication speed

start
•Send a start communication to the slave device

identify
device

•Use the 'Write' bit located on the LSB of the device slave
address.

register
•Write to 0xF0 register address

write
data

•Write to slave device 0x55 data

register
•Write to 0xFB register address

write
•Write to slave device 0x00 data

Stop
•Initiate halt condition

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 7 of 12 www.4dsystems.com.au

Handshaking of master and slave device is the most important amongst I2C

communication setup procedure. Without fulfilling this requirement the

transferring of data to and from the slave device will not be possible.

The request for data sub-routine - request()

After setting up the master-slave I2C handshake between the devices the next step

is to send the request for the internal preparation of data within the Wii Nunchuk.

The slave device awaits a request byte to be written following a device ‘write’

address byte. The statements below shows this request procedure. The slave

device write address, as given from the previous section of this document, is 0xA5.

After writing this to the slave, it is followed by a 0x00 byte. This byte directs the

slave device to prepare the output data of the accelerometer, analogue output and

the button status.

Again, putting this into a flow diagram

will result to the following. Note that

this sub-routine is primarily used to tell

the Wii Nunchuk

The receive data sub-routine – receive()

Next sub-routine to understand is the receive routine. This section simply sends

out the slave device address, with the read bit high, to the slave device. The slave

read request is a bit set at the LSB of the slave address. Reading the information

from the slave device requires that the LSB of the slave address will be set to a high

bit to represent – ‘reading mode of the slave address’.

Wii Nunchuk I2C device address

1 0 1 0 0 1 0 Read : 1

Hence, the resulting byte to be written over the I2C would be 0xA5. Below are the

statements contained in the receive() sub-routine. Note that that the constant

device has a value of (0xA4);

Before a 6-byte data is sent from the slave device to the master, an

acknowledgment from the Wii Nunchuk is needed. The I2C_AckStatus() function is

used to receive the acknowledgment from the slave device. Following receipt of

the acknowledgment from the slave device a succession of data receive and

acknowledgment is done by the master device, in this case the PICASO.

start

•Send a start communication to the slave
device

identify
device

•Use the 'Write' bit located on the LSB of
the device slave address.

write data

•Write conversion request byte to slave
device 0x00 data

Stop
•Initiate halt condition

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 8 of 12 www.4dsystems.com.au

The flow diagram is the process in which the 6-bytes from the Wii Nunchuk is

received by the PICASO.

The data received by the PICASO needs to be arranged at this point. The

statements at the end of this sub-routine re-arranges the receive data to

show the real data for the analogue, accelerometer and the buttons.

The end result of the receive() sub-routine returns the real values to the _data

buffer array.

Editing the analogue and accelerometer data –edit()

This subroutine is intended to format the received accelerometer data to fit the

dimensions of the display module used in this application project. This sub-routine

was written to provide a better visual presentation of the accelerometer data.

Here, the _data index 2 and 3 are shifted to the right by a single bit and then

subtracted from a value of 400. The resulting value of this subroutine replaces the

real value in the same index positions of _data array.

start
•Send a start communication to the slave device

read
address

•Use the 'Read' bit located on the LSB of the device slave address.

wait slave
ack

•wait for the read acknowledgment from slave device

receive
and ack

(6X)

•the master device will read the data sent by the slave address and
reply with an acknowledgment every after byte received. This receive
and acknowledge is done six times to read all data.

Stop
• initiate a halt condition

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 9 of 12 www.4dsystems.com.au

The IF conditional loops

Being able to communicate with the slave device Wii Nunchuk, simple IF-condition

loops that displays the output value are included in this application. This IF-

conditional loop are made in reference with the buttons pressed. The Wii Nunchuk

has two buttons available. Using these buttons, a total of four states can be made.

Drawing a colour filled circle using the analogue data

The analogue data described from the previous sections of this document is used

to provide a centre point for a colour filled circle. This conditional loop is dependent

on the C button of the Wii Nunchuk. Referring to the program statements below,

we could see that whenever the button pressed is pressed and results to a 0x01

value in _data[5].

With the value of _data[5] being able to comply with the condition then the

drawing of the horizontal and vertical lines together with the other statements

inside the conditional loop are executed.

Drawing a colour filled circle using the accelerometer x/y data

Likewise the accelerometer x and y, is used to draw a colour filled circle. The centre

point of the circles denotes the current position of the Wii Nunchuk. Again, the

values used herein are for presentation purposes. Referring to the statements on

the next column, we can see horizontal and vertical line drawn to the screen

display. The numerical data is also displayed on the side. All these statements are

executed only if the Z button is pressed.

A press on the Z button will result to a value equal to 0x02. If the condition is

fulfilled, then the statements include therein are executed.

When no buttons and both buttons are pressed

In the event that there are no buttons pressed, this will result to a value equal to

0x03. This is the result of the received data over I2C. When this condition is fulfilled,

the drawing of horizontal and vertical lines are continually executed.

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 10 of 12 www.4dsystems.com.au

The set of conditions included in this conditional loop clears the screen using the

gfx_Cls() function. The screen is cleared only if a result of value in _data[5] is equal

to the 0x00. This is the event that both of the C and Z buttons are pressed.

Running the Program

Making the program work is fairly simple. Download the program into the display

module and connect the slave device to the master. The images shows the correct

connection of the I2C to the display device. Note that the SCLs and SDAs must be

coupled together for both devices.

Wiring Connections of Wii Nunchuk to PICASO

Using the Wii Nunchuk terminal adapter, seen in the images here, the connection

to the Wii Nunchuk can be easily connected to the PICASO display module. A set of

header pins and jumper wire will be very useful for temporary connections.

For the succeeding parts of this section, a simplified wiring connection discussion

will be presented. Also, included in the next sections are the axial reference for the

Wii Nunchuk and connection pin-outs.

Below is the terminal pin-out for the WII

Nunchuk.

Above is the complete display and Wii Nunchuk project. Notice that the interface

between the two devices is quite simple. There are simply four connections needed

in this application project, namely: SCL, SDA, VCC, and GND. Below we can see how

the Wii Nunchuk port is connected to the adapter.

Following the pin match-up table for the Wii Adapter and the PICASO 30 way

header pins connections, the connections must be similar to the one below.

Wii
Adapter

PICASO (30
way header)

Wire colour

+ 3.3 volts Blue

- GND Green

SDA PIN 3 Violet

SDC PIN 2 Grey

APPLICATION NOTES 4D-AN-00051

© 2014 4D Systems Page 11 of 12 www.4dsystems.com.au

Here are some photos that show the result of the project. When the

analogue signal from the joystick is used, we need to press the C button to

activate the drawing of circles.

Likewise, pressing the Z button enables drawing of the circle using the

accelerometer as reference for the X and Y value.

Below is the axial reference for the Wii Nunchuk.

z

y x

APPLICATION NOTES 4D-AN-00051

Page 12 of 12 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

