

ViSi Winbuttons

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 3rd May 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00068

 Page 2 of 20 www.4dsystems.com.au

 Description

This application note shows how to add and configure a fancy button or win

button, one of the widgets available in Workshop. Before getting started,

the following are required:

 Any of the following 4D Picaso display modules:

gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT
uLCD-24PTU uLCD-28PTU uVGA-III

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-38D series gen4-uLCD-43D series gen4-uLCD-50D series
gen4-uLCD-70D series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which is a

Picaso display. This application note is applicable to Diablo16 display

modules as well.

 4D Programming Cable / µUSB-PA5/uUSBPA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / 4D-UPA / gen4-PA

for gen4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_38D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00068

 Page 3 of 20 www.4dsystems.com.au

Content

Description ... 2

Content ... 3

Application Overview ... 4

Setup Procedure ... 4

Create a New Project ... 4

Design the Project .. 5

The Simple Button ... 5

Create a Fancy Button in the WYSIWYG Screen 5

Insert the Fancy Button Code 6

Save the Program 7

Change the Button State from 0 to 1 8

Control the Simple Button with Touch ... 8

Enable Touch Detection 8

Check Touch Status 8

Check if the Button is Touched or Not 9

A Simple Example 9

The On/Off or Toggle Button ... 9

How an On/Off Button Works 9

Create a Fancy Button in the WYSIWYG Screen 9

Configure the Off State Appearance 10

Configure the On State Appearance 11

Insert the Code 11

On/Off Button States 12

A Simple Example with Touch Detection 12

Button Matrix – a Group of Buttons ... 13

Create a Fancy Button in the WYSIWYG Screen 13

Configure the Off State Appearance 14

Configure the On State Appearance 14

Insert the Code 15

Index Values 16

A Simple Example 17

Combination of Buttons ... 17

Run the Program .. 19

Proprietary Information ... 20

Disclaimer of Warranties & Limitation of Liability 20

APPLICATION NOTES 4D-AN-00068

 Page 4 of 20 www.4dsystems.com.au

 Application Overview

This application note explains how to add a fancy button or win button to

the WYSIWYG screen, how to paste the generated code, how to display the

different states, and how to write a code for button touch detection. The

procedures for configuring a fancy button to function as a simple (or

momentary) button, an on/off (or toggle) button, or as one button among a

group of many are also shown. The user can then choose which among these

modes of function to implement depending on the nature of the intended

application.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00068

 Page 5 of 20 www.4dsystems.com.au

 Design the Project

The Simple Button

Create a Fancy Button in the WYSIWYG Screen

Go to the Widgets menu, select the Buttons pane, and click on the fancy

button icon.

Once the fancy button icon is selected, click on the WYSIWYG screen to

place it.

The Object Inspector shows the different properties of the button. By

default, a button added to the WYSIWYG screen is a momentary button. In

common GUIs the simple button is the equivalent of a momentary button.

It is activated when the mouse button is depressed and deactivated as soon

as the mouse button is released. In a similar manner, a momentary button

is activated when a touch press is detected, and deactivated when the touch

is released. To illustrate:

Button is shown at initial state 0

Button is touched or pressed,
state is changed from 0 to 1

Button is released, button now
goes back to state 0

Note that the button has two states, state 0 and state 1. The button appears

darker at state 1, giving the impression of being depressed. ViSi

automatically generates these two states for a simple momentary button.

All we have to do is create a code for the button to display any of these two

states depending on whether it is touched or not.

 C

APPLICATION NOTES 4D-AN-00068

 Page 6 of 20 www.4dsystems.com.au

The physical equivalent of a momentary button is the pushbutton or the tact

switch.

Tact switch Pushbutton switch Symbol

Insert the Fancy Button Code

Go to the code area and place the cursor just after the handle assignment

statement (line 32 in this example).

Having selected the fancy button object, go to the Object Inspector and click

on the Paste Code button.

The code will be updated accordingly.

A new block for the button is generated, along with comments for each line.

Additional explanations are given below.

The statement in line 34

img_ClearAttributes(hndl, iWinbutton1, I_TOUCH_DISABLE);

 C

APPLICATION NOTES 4D-AN-00068

 Page 7 of 20 www.4dsystems.com.au

enables the object, iWinbutton1, for touch detection. Not doing this will

make the object unresponsive to touch.

The command img_Show(hndl,iWinbutton1) displays the button at the

default initial state – state 0.

Appearance State

0

Comment out the statements in lines 36 and 37 for now.

Save the Program

Jump to the section “Run the Program” to learn how to compile and

download a program. Now we make a quick test if the simple program

works. Save the program with the desired file name first, and then compile

and download it. The program in this example is saved as

“FancyButtonTutorial”.

Upon inserting the μSD card, the fancy button at state 0 should be shown

on the display module screen as configured in the WYSIWYG screen. Below

is the code at this point, with the unnecessary lines excluded.

#platform "uLCD-32WPTU"

// Program Skeleton 1.0 generated 5/26/2013 2:17:40 PM

#inherit "4DGL_16bitColours.fnc"

#inherit "VisualConst.inc"

#inherit "FancyButtonTutorialConst.inc"

func main()

 putstr("Mounting...\n");

 if (!(disk:=file_Mount()))

 while(!(disk :=file_Mount()))

 putstr("Drive not mounted...");

 pause(200);

 gfx_Cls();

 pause(200);

 wend

 endif

 gfx_TransparentColour(0x0020);

 gfx_Transparency(ON);

 gfx_Cls();

hndl := file_LoadImageControl("FANCYB~1.dat",

"FANCYB~1.gci", 1);

 // Winbutton1 1.0 generated 5/26/2013 2:20:48 PM

 img_ClearAttributes(hndl, iWinbutton1, I_TOUCH_DISABLE);

 img_Show(hndl, iWinbutton1);

 repeat

 forever

endfunc

APPLICATION NOTES 4D-AN-00068

 Page 8 of 20 www.4dsystems.com.au

Change the Button State from 0 to 1

Appearance State Appearance State

0

1

To change the state of the fancy button, we use the command:

img_SetWord(hndl, iWinbutton1, IMAGE_INDEX, 1) ;

Here the value of IMAGE_INDEX for iWinbutton1 is set to 1. The parameter

IMAGE_INDEX is the current frame of the object. There are two frames for

iWinbutton1 – frame 0 and frame 1, each representing the object at its

different states. The following code will illustrate this.

//set iWinbutton1 to display frame 1

img_SetWord(hndl, iWinbutton1, IMAGE_INDEX, 1) ;

//display iWinbutton1

 img_Show(hndl, iWinbutton1);

//add a delay

pause(2000);

//set iWinbutton1 to display frame 0

img_SetWord(hndl, iWinbutton1, IMAGE_INDEX, 0) ;

//display iWinbutton1

 img_Show(hndl, iWinbutton1);

repeat

forever

Insert the code above to your main program. When compiled and

downloaded, it should display the button at state 1 for two seconds, then at

state 0 forever.

Control the Simple Button with Touch

In this section we will configure the button to respond to touch.

Enable Touch Detection

Before using the touch feature, enable it with the function:

touch_Set(TOUCH_ENABLE);

To disable the feature, use the function:

touch_Set(TOUCH_DISABLE);

The touch detection feature runs in the background and disabling it when

not in use will free up extra resources for the 4DGL CPU cycles.

Check Touch Status

Now that the screen is enabled for touch detection, it needs to be constantly

checked for a change in state. The status of a touch response is retrieved by

using the following command:

touch_Get(TOUCH_STATUS);

Using the touch_Get() function returns a value depending on the current

state. Integers 0 to 3 or their MACRO equivalents are returned based on the

following results:

APPLICATION NOTES 4D-AN-00068

 Page 9 of 20 www.4dsystems.com.au

0 = NOTOUCH

1 = TOUCH_PRESSED

2 = TOUCH_RELEASED

3 = TOUCH_MOVING

Check if the Button is Touched or Not

Of course the button is only a part of the screen. When the screen is

touched, we need to know if the point of touch is within the region of

interest, which is the button. One way to do this is to use the function,

img_Touched(handle, index). This function returns back the index if the

image (or button) is touched or returns -1 if not.

 n := img_Touched(hndl, iWinbutton1)

 if(n == iWinbutton1)

 print(“iWinbutton1 is touched”);

 if(n == -1)

 print(“Touch is outside iWinbutton1);

 endif

A Simple Example

The previous code was improved to create a program that initially displays

a button at state 0. When touched or pressed, the button will be displayed

at state 1, giving the impression that it is depressed. Upon release, the

button goes back to state 0.

Open, compile, and download the accompanying ViSi file

FancyButtonTutorial.4dViSi to your display module. Note that aside from

press and release, the program also has a code for detecting movement. The

user is encouraged to analyse and experiment with the code.

The On/Off or Toggle Button

How an On/Off Button Works

The fancy button can also be configured to function as an on/off button. A

mouse click activates it, and another click is needed to deactivate it. In other

GUIs, this is equivalent to a check box.

 click click

An on/off button responds to touch in a similar manner, as will be shown

later. Both the toggle switch and the rocker switch can be thought of as a

physical equivalent of an on/off button.

Create a Fancy Button in the WYSIWYG Screen

In this section, we will create a program for an on/off button. It is best to

create a new program for this, separate from the simple button program

developed previously. After having removed the block comment symbols in

the program skeleton, go to the Widgets menu, select the Buttons pane, and

click on the fancy button icon.

APPLICATION NOTES 4D-AN-00068

 Page 10 of 20 www.4dsystems.com.au

Once the fancy button icon is selected, click on the WYSIWYG screen to

place it.

The Object Inspector shows the different properties of the button. Click on

the property Momentary and click on the symbol . A drop down menu

appears. Choose No.

Configure the Off State Appearance

It is possible to add a button caption, the purpose of which is to visually

indicate what state the button is to be displayed at. In the Object Inspector

click on the symbol beside StatusWhenOff.

The properties under StatusWhenOff will appear.

Click on the Caption property line, type in the text “OFF”, then press Enter.

The WYSIWYG screen will be updated accordingly.

 C

 C

APPLICATION NOTES 4D-AN-00068

 Page 11 of 20 www.4dsystems.com.au

Configure the On State Appearance

Follow the same procedure to create the on state appearance of the button.

Use the properties under StatusWhenOn. Type in “ON” for the button

caption. Shown below is the on state appearance of the button when you

run the program later on.

Insert the Code

Go to the code area and place the cursor just after the handle assignment

statement (line 32 in this example).

Having selected the fancy button object, go to the Object Inspector and

click on the Paste Code button.

The code will be updated accordingly.

A new block for the button is generated, along with comments for each line.

Comment out the statements in lines 36 and 37 if you intend to test run the

program at this point. The module will simply display the button at the

default initial state (state 0).

 C

APPLICATION NOTES 4D-AN-00068

 Page 12 of 20 www.4dsystems.com.au

On/Off Button States

Unlike the simple momentary button which has only two states, the on/off

button has four states, which are automatically generated by Workshop.

The button cycles between these four states as it is toggled on and off. To

illustrate:

Button is initially shown at state 0

Button is pressed, state is changed
from 0 to 1

Button is released, state is changed
from 1 to 2

Notice that the button appears dark when pressed and light when released.

To continue:

Button is shown at state 2

Button is pressed, state is changed
from 2 to 3

Button is released, state now goes
back to state 0

A Simple Example with Touch Detection

Attached is a simple ViSi program, ToggleTutorial.4dViSi, for the user to

study and experiment with.

APPLICATION NOTES 4D-AN-00068

 Page 13 of 20 www.4dsystems.com.au

Button Matrix – a Group of Buttons

Very often, different buttons are used together to bring a choice among

different options. Selecting one option cancels the previous one.

This is the equivalent of radio buttons:

In ViSi, this can be shown as:

Actually, the three buttons are on/off buttons, each of which is programmed

to show different states depending on the location of touch.

Create a Fancy Button in the WYSIWYG Screen

We will now create a program for a group of buttons. Again, it is best to

create a new program for this, separate from the ones developed

previously. After having removed the block comment symbols in the

program skeleton, go to the Widgets menu, select the Buttons pane, and

click on the fancy button icon.

Once the fancy button icon is selected, click on the WYSIWYG screen to

place it. The screen will be updated accordingly.

The Object Inspector shows the different properties of the button. Click on

the property Momentary and click on the symbol . A drop down menu

appears. Choose No.

 C

APPLICATION NOTES 4D-AN-00068

 Page 14 of 20 www.4dsystems.com.au

Configure the Off State Appearance

Now add a button caption, the purpose of which is to visually indicate if the

button is selected or not. In the Object Inspector click on the symbol

beside StatusWhenOff.

The properties under StatusWhenOff will appear.

Click on the Caption property line, type in the text “Not Sel”, then press

Enter.

The WYSIWYG screen will be updated accordingly.

Configure the On State Appearance

Follow the same procedure to create the on state appearance of the

button. Use the properties under StatusWhenOn.

Type in “Selected” for the button caption. Also, change the background

colour to green.

Shown below is the on state appearance of the button. This will be shown

when you run the program.

 C

APPLICATION NOTES 4D-AN-00068

 Page 15 of 20 www.4dsystems.com.au

Now create two more instances of this button. After having created three

identical buttons, your WYSIWYG screen will look like as shown below:

Insert the Code

Go to the code area and place the cursor just after the handle assignment

statement (line 32 in this example).

Now click on any part of the form outside the buttons, or choose Form1 as

the current object in the Object Inspector.

 Now click on the Paste all Code button.

The code will be updated accordingly. The codes for all the three buttons

under Form1 are inserted.

 C

APPLICATION NOTES 4D-AN-00068

 Page 16 of 20 www.4dsystems.com.au

Note that each button has a unique index name – iWinbutton1 for

Winbutton1, iWinbutton2 for Winbutton2, and iWinbutton3 for

Winbutton3. As discussed previously, the functions img_SetWord(handle,

index, offset, word) and img_Show(handle, index) are used to change and

show the state of an object. When dealing with multiple objects, make sure

that the specified index is correct.

If you wish to test run the program now, comment out lines 38, 39, 44, 45,

50, and 51. As an alternative, analyse the code and declare state as a

variable. Assign it a value of 0, 1, 2, or 3 at the beginning part of the code.

When you run the program, the module will now display the three buttons

at the state specified by the variable, state.

Index Values

The parameter index is an integer, the value of which starts at zero. In this

example, Winbutton1 has an index value of 0 since it is the first object

created. Winbutton2 has an index value of 1 since it is the second object

created, and so on. The statement

img_Show(hndl, 0)

brings about the same result as the statement

img_Show(hndl, iWinbutton1)

Therefore, iWinbutton1 is equal to zero. The table below lists the index

names and values for the three buttons.

Object Index name Index value

Winbutton1 iWinbutton1 0

Winbutton2 iWinbutton2 1

Winbutton3 iWinbutton3 2

If another object is added to the program, say a user LED, Workshop assigns

it an index value of 3, it being the fourth object created.

Object Index name Index value

Userled1 iUserled1 3

To show the user LED, use the statement

APPLICATION NOTES 4D-AN-00068

 Page 17 of 20 www.4dsystems.com.au

img_Show(hndl, iUserled1);

or
img_Show(hndl, 3);

A Simple Example

After knowing how index values are assigned to objects, it is now possible

for the user to program a set of buttons to behave as a group, wherein

selecting a button deselects the others. Attached is a simple program,

GroupTutorial.4dViSi, for a group of three buttons. Note how the index

values are assigned to or replaced with different variables.

Remember that an on/off button has four states generated by Workshop. In

this example, the states are as follows:

State 0
Off state or not selected state
Button appears light

State 1
Off state or not selected state
Button appears dark

State 2
On state or selected state
Button appears light

State 3
On state or selected state
Button appears dark

As discussed earlier, the dark appearance of a button can be used to indicate

that it is pressed, the light appearance to indicate that is not pressed. To

simplify the program however, only states 0 and 2 are used in

GroupTutorial.4dViSi. The user can add more buttons to the group after

having understood how the program works.

Combination of Buttons

In summary, three kinds of buttons are discussed in this application note -

the simple (or momentary) button, the on/off (or toggle) button, and the

group of buttons. A ViSi program for each kind is also provided. The codes

are heavily commented to help explain how the program works. Now,

Workshop comes with many sample programs, one of which is for a

combination of these buttons. To open it, click on the File menu.

APPLICATION NOTES 4D-AN-00068

 Page 18 of 20 www.4dsystems.com.au

Near the bottom of the drop down menu, you can find the Samples

button, click on it.

The samples window now appears. Select Picaso ViSi.

Select the file FANCYBUTTONS then click on Open.

The program now opens.

APPLICATION NOTES 4D-AN-00068

 Page 19 of 20 www.4dsystems.com.au

Run the Program

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination (this option is not

available for Goldelox displays), and how to compile and download a

program, please refer to the section “Run the Program” of the application

note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00068

 Page 20 of 20 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

