
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi Data Loop Back Testing of

Serial Hardware

DOCUMENT DATE: 15th APRIL 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00072

Page 2 of 13 www.4dsystems.com.au

 Description

This Application note is intended to demonstrating to the user the set-up,

initialization and operation of the built-in serial communications port of the

Diablo16 display module.

Before getting started, the following are required:

 The target module can also be a Diablo16 display

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series

gen4-uLCD-70D series
uLCD-35DT uLCD-43D series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor. The display

module used in this application note is the uLCD-32PTU, which

is a Picaso display. This application note is applicable to

Diablo16 display modules as well.

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

for non-gen4 displays(uLCD-xxx)

 4D Programming Cable & gen4-PA, / gen4-IB / 4D-UPA

for non-gen4 displays(uLCD-xxx)

 Workshop 4 IDE (installed according to the installation

document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read

or has a working knowledge of the topics presented in these

recommended application notes.

 This application note requires that the reader has a basic

knowledge of any programming language such as C.

https://www.4dsystems.com.au/product/gen4-uLCD-24D/
https://www.4dsystems.com.au/product/gen4-uLCD-28D/
https://www.4dsystems.com.au/product/gen4-uLCD-32D/
https://www.4dsystems.com.au/product/gen4-uLCD-35D/
https://www.4dsystems.com.au/product/gen4-uLCD-43D/
https://www.4dsystems.com.au/product/gen4-uLCD-50D/
https://www.4dsystems.com.au/product/gen4-uLCD-70D/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_43D/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00072

Page 3 of 13 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview ... 3

The DIABLO16 Embedded Graphics Processor ... 4

Setup Procedure ... 4

Create a New Project ... 4

The DIABLO16 Serial Com Ports ... 5

The map-able Serial communication ports 5

Design the Project .. 7

The Include Section .. 7

The main program ... 7

The Serial communications port setup and initialization 7

The micro-SD initialization ... 8

The initial image display and image touch setup segment 9

The repeat-forever image touch detect loop 9

The moveSlider sub-routine .. 10

Running the Project .. 11

Proprietary Information ... 13

Disclaimer of Warranties & Limitation of Liability 13

 Application Overview

This document is about basic asynchronous serial hardware loopback. It

uses the four serial communication ports that are available to the Diablo16

OGM and Diablo16 display module. The primary objective of this application

note is to demonstrate to the user the ease of serial hardware setup,

initialization, and usage with the Diablo16 display module. Using the

available serial port of this display module, the user will be able to

interconnect with several other devices.

The availability of several data rate speeds for these serial communication

ports allows the user to choose their desired transfer speed according to

their need. The range of baud rate transfer is from a minimum of 300 baud

up to a 600K baud.

http://www.4dsystems.com.au/product/1/133/4D_Intelligent_Display_Modules/DIABLO16-OGM/
http://www.4dsystems.com.au/product/1/133/4D_Intelligent_Display_Modules/DIABLO16-OGM/
http://www.4dsystems.com.au/product/1/132/4D_Intelligent_Display_Modules/uLCD_70DT/

APPLICATION NOTES 4D-AN-00072

Page 4 of 13 www.4dsystems.com.au

 The DIABLO16 Embedded Graphics Processor

Driving the display and peripherals is DIABLO16 embedded graphics

processor, a very capable and powerful chip which enables stand-alone

functionality, programmed using the 4D Systems Workshop 4 IDE Software.

The Workshop IDE enables graphic solutions to be constructed rapidly and

with ease due to its design being solely for 4D’s graphics processors.

The DIABLO16 Processor offers considerable FLASH and RAM upgrades over

the PICASO processor, and also provides map-able functions such as I2C, SPI,

Serial, PWM, Pulse Out, and Quadrature Input, to various GPIO, and also

provide up to 4 Analogue Input channels.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00072

Page 5 of 13 www.4dsystems.com.au

 The DIABLO16 Serial Com Ports

To create a simple program that will be able activate and initialize the

DIABLO16 serial ports, we will need to use some commands enlisted in the

DIABLO 4DGL Internal Functions.

In particular, we will be using the Serial (UART) Communications Functions.

The DIABLO16 serial communication ports uses only the Transmit(TX),

Receive(RX) and ground pins of the standard serial communication port, it

is relative easy to use. Before going further it is good to remember that the

DIABLO16 display module has four serial communications port which can be

simultaneously used to communicate with other serial capable controllers

or devices.

There are several important settings of a serial communications that are

very important to have an effective and correct data communications. First

thing to consider is the BAUD RATE, the baud rate is simply the rate of

transfer from and to the device. If there exist a mismatch in the baud rate

of two serially coupled devices – the serial communication will be

erroneous.

Secondly, it is also good to consider the number of bytes that shall be

transferred at the instance of communication. This is important so that we

display device will be programmed to have a particular buffer which is

capable to save a series of bytes continuously. This size of the temporary

data storage, which is termed as a buffer, will determine the size of the data

that can be stored. For this application, we will be utilizing these

communication ports to update the value of a Workshop IDE object built

under the ViSi environment. The objects include an input object (i.e. slider)

will provide the data that for the output objects (i.e. cool gauge and custom

LED digits).

For this loopback test, we will have to attain the following: setup and

initialization of the map-able serial communication ports. Without being

able to achieve the aforementioned objective, the application will not be

able achieve its purpose.

The map-able Serial communication ports

The DIABLO16 embedded graphics processor allows the user to assign the

general I/O pin to be used for each ports. In the former sections of this

application note, it was mentioned that the DIABLO16 has a total of four

serial communication ports. Of this four serial com ports, Com0 is the only

one used to programming the DIABLO16 processor. Also, the Com0 is

assigned on fixed pin assignment while the others are capable of being

mapped into a field of I/O pins.

These I/O pins are located similar

to the image. This group of pins

includes the 14 general I/O pins

which are configurable to perform

certain functions depending on

the user preferences.

http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00072

Page 6 of 13 www.4dsystems.com.au

The serial communication port can be assigned to a pin according to the

specifications of the DIABLO16 Datasheet. Referring to the image below, we

can see that a particular serial transmit or receive pin can only be assigned

to a particular pin number. This pin may be common to all the other three

serial com ports or exclusive to itself.

 A serial port can only be

assigned with a single transmit

or receive terminal. This means

that a particular serial port

cannot have two receive or

transmit terminal. This port is

restricted to follow the normal

convention for serial

communication port.

A general I/O pin can only be

configured to a particular

function. Overlapping

assignment of pin functions

can cause erroneous data

reception and transmission.

The DIABLO16 configurable I/O are a group of 3.3 volts TTL level terminal

but these are tolerant to a maximum of 5 volts. Anything greater than or less

than the specified operating voltage may prohibit proper communication or

even damage the embedded graphics processor.

The 2x15 male header pin assignment of the DIABLO16 70DT. The previous

table on serial com port configuration option are lumped together with

several other specific purpose pins.

APPLICATION NOTES 4D-AN-00072

Page 7 of 13 www.4dsystems.com.au

 Design the Project

This application projects involves the use of an input slider together with a

custom LED digits to display its current value. On the other hand to display

the received value at the receiving end of the serial com port, a cool gauge

as a display.

Navigate through the widgets menu of the Workshop 4 IDE and add a slider,

a custom LED digit or a simple LED DIGIT and a cool gauge object to the

project. Create the project to be similar to the one below.

After all the objects have been laid-out, let’s continue with the other half

which involves the coding of the project. This will be presented in a sectional

manner so as not to create confusion with the project. For an in-depth detail

of the functions used in this application note please refer to the DIABLO16

Internal Functions Reference Manual.

The Include Section

This project starts with the identification of the platform being used as

declared by the #platform function. For the program to be able to function

properly files are included herein using the #inherit function.

In this application note, the D3001_Serial_Hardware_LoopbackConst.inc,

contains all the information about the objects that are used in the project.

Meanwhile, the leddigitsdisplay.inc contains the function for the proper

operation of the led digits objects.

The main program

The main program for this projects contains several sections: the

initialization and setup of serial communication ports, the mounting of the

micro-SD card, the initial displaying and image touch setup for objects, and

lastly, the touch detection loop.

The Serial communications port setup and initialization

The following statement is the pin assignment for the serial communication

ports. It can be noticed that no assignment involving the COM0 was done.

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00072

Page 8 of 13 www.4dsystems.com.au

The COM0 of this display device is fixed. The only setting that can apply to

this communication port is the buffer, qualifier identification and the baud

rate setting. This port has its own designated pin on the H1 header pin

group. In this group of statements the communication ports pin assignment

were made adjacent to the ports TX and RX so that putting up a jumper will

be easy.

The micro-SD initialization

Let’s start with the initialization of the uSD card. The uSD card contains all

the image information about the objects used in the project. The object

information and data are saved under a *.DAT and a *.GCI filename

extension which is copied to the uSD during project compilation. Mounting

of the disk in this application note was done using the following set of

program statements.

When starting a new project in the ViSi environment these set of statements

are already included in the coding area. The last part of this set of

statements uses a function file_LoadImageControl() to call on the object

data/information files on the uSD drive. This initializes the data to be called

in using the variable ‘hndl’.

Having been able to load and initialize the uSD drive, the processor is now

able to access the information stored therein. As mentioned from the

previous section, the filenames with an extension of DAT and GCI has the

image data and information. Therefore, the next part of the main program

is to display all the objects that were placed on the Workshop IDE form

viewer.

To do so, a special button from the Object Inspector can help reduce the

time of coding of this part. The ‘Paste Code” simply pastes object code.

APPLICATION NOTES 4D-AN-00072

Page 9 of 13 www.4dsystems.com.au

The initial image display and image touch setup segment

In this part of the program, the img_Show() function simply calls out the

object image and information found in the microSD drive. This set of

statements displays every object that were included in the application

project.

The DIABLO16 has a total of four serial com ports. In line with this, this

project has a group of three objects with four indices each. As seen in the

previous part of this application note, all of these objects are used for each

serial port to perform a particular function.

Moving to the next part of the main program, this segment is all related to

the image touch detection setup.

This statements uses the img_SetWord() function. The primary objective of

this set of statement is to enable the touch detection for the slider image.

The slider images on this project serves as an input objects which utilizes the

touch feature of the device. At the end, of this segment we would notice

that the touch feature of the device was enabled using the

touch_Set(TOUCH_ENABLE) statement.

The repeat-forever image touch detect loop

At this end part of the main program, the routine was to detect any activity

on the touch screen. Please refer to the image on the next page. Three touch

states were included in the repetitive routine: the detection for a pressed

state, a released state, and a moving state. Prior to the touch detection, a

variable ‘n’ is assigned to store temporary image touch detection result. The

img_Touched() function checks the object being touched and return the

name of the object enlisted in the variable ‘hndl’.

Moving to the touch detection routines, when a touch status of ‘pressed’ is

detected the value of the coordinates are saved on the variables x and y.

APPLICATION NOTES 4D-AN-00072

Page 10 of 13 www.4dsystems.com.au

The most significant segment of this routine is the moving touch state, it is

in this conditional loop that the image touch detection is made use. If a

touch was detected over the slider image, a sub-routine or a function is

called upon and executed by the processor.

Let us take the above statement as an example. From the start of the repeat-

forever loop, the img_Touched() function saves the result of an image touch

to a variable ‘n’, this is then checked in the touch moving conditional

statements. If it proves to be equal to one of the conditions then the sub-

routine will be executed. For this statement a moveSlider1() sub-routine is

being called and executed.

The moveSlider sub-routine

This application projects contained four sub-routines that are identical to

each other but are different with regards to the serial communication port

that they utilize. The function names were assigned to ease up the

identification of the sub-routine. The touch in the Slider1 object will result

to a call and execute of a moveSlider1() sub-routine. Also a touch in the

Slider2 will call and execute a moveSlider2() sub-routine.

The first part of the sub-routine is the declaration of the local variables used.

one the moveSlider1() is called it first shows the slider image. This set of

statements is automatically copied to the coding area under the

mainSlider1() function with the use of the ‘Paste Code’ button on the Object

Inspector window of the Workshop 4 IDE. In this set of statements, the

slider1 image is being set to the frame equivalent to the content of the

variable ‘posn’. Furthermore, to have a better visual of the slider value this

‘posn’ result will be displayed by the custom LED digit object. When the

slider value is changed by sliding the bevel, the resulting value will be stored

in the local variable ‘posn’ and then be sent over to the serial

APPLICATION NOTES 4D-AN-00072

Page 11 of 13 www.4dsystems.com.au

communication port’s TX. One the data is already sent, this data will be used

to update the value of an object – a cool gauge.

This will also be the operation for all the other communication ports. These

com ports will serve as the medium in which the data is made to

communicate. The serin() function immediately retrieves the data that was

sent over to itself. The data is temporarily saved to a variable ‘frame’. This

returned value is now set as the current value for the cool gauge object.

 Running the Project

After being able to download the project into your DIABLO16 display

module, a couple of steps are need to run the project properly. First thing

to do is to check if the slider and the LED digits are working properly. Adjust

the position of the slider. These change in position should be equal to the

number being displayed in the LED digits. After being able to make sure that

the slider object is already working properly, let us focus now out attention

on the serial hardware test.

During initial power up of the display device, we would notice that all of our

objects are being display in the module. On the contrary, at the instant of

moving the slider object we would notice that the cool gauge object will not

be displayed. This means that our serial receive port is not able to detect

any transmitted value. Referring to the image on the next page, we would

see here the result of the missing data.

APPLICATION NOTES 4D-AN-00072

Page 12 of 13 www.4dsystems.com.au

Due to an open connection between the TX and RX of the communication

ports the reception of data is

not possible. We will need to

have a couple of jumpers.

 These jumpers will be

connected to the pins

relative to the pin

assignment made in the

serial port initialization

segment of the main program. Following the pin assignment made will yield

to a set of jumpers positioned similar to the

image.

Having been able to set the jumpers to create a

connection between the TX and RX of each serial

communication ports. The correct data being

sent over must be detected already and hence,

lead to the cool gauge being displayed.

The cool gauges must match

the values displayed on the LED

digits and must be able to

change its value each time the

slider is moved.

APPLICATION NOTES 4D-AN-00072

Page 13 of 13 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

