
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi Genie Magic How to read a

File

DOCUMENT DATE: 8th MAY 2020

DOCUMENT REVISION: 1.2

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00161

Page 2 of 24 www.4dsystems.com.au

 Description

This application note primarily shows how the Magic Object is used to

implement a ViSi-Genie project that allows the host to access files on the

uSD card of the display. There are seven types of file access operations:

1. MFILE_READ

2. MFILE_WRITE

3. MFILE_APPEND

4. MFILE_ERASE

5. MFILE_DIR

6. MFILE_SCREEN_CAPTURE

7. MFILE_SIZE

For this application note, the file access operation “MFILE_READ” is

discussed. The implementation of a file read operation further requires the

use of the following 4DGL features and functions in combination with the

Magic Event object:

• String class functions

• FAT16 file functions

• seroutCS(…)

The String class functions and FAT16 file functions are functions native to

the Picaso and Diablo16 processors.

The function seroutCS(…) is one of the Genie Magic callable functions in the

ViSi-Genie Communications Protocol. This function writes a parameter to

the Genie Serial port and updates the output checksum.

Below is a screenshot image of the project used in this application note.

Note 1: The ViSi-Genie project for this application note is the demo

“FileAccess”, which is found in Workshop. Go to the File menu -> Samples -

> ViSi Genie Magic (Picaso/Diablo16) -> FileAccess.4DGenie.

Note 2: Workshop Pro is needed for this application.

APPLICATION NOTES 4D-AN-00161

Page 3 of 24 www.4dsystems.com.au

Before getting started, the following are required:

• Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-28PTU uVGA-III
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

and other superseded modules which support the ViSi Genie

environment.

• The target module can also be a Diablo16 display

gen4-uLCD-24D
Series

gen4-uLCD-28D
Series

gen4-uLCD-32D
Series

gen4-uLCD-35D
Series

gen4-uLCD-43D
Series

gen4-uLCD-50D
Series

gen4-uLCD-70D
Series

uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

• 4D Programming Cable / µUSB-PA5/µUSB-PA5-II

for non-gen4 displays (uLCD-xxx)

• 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,

for gen-4 displays (gen4-uLCD-xxx)

• micro-SD (µSD) memory card

• Workshop 4 IDE (installed according to the installation document)

• When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00161

Page 4 of 24 www.4dsystems.com.au

Content

Description ... 2

Content ... 4

Application Overview ... 5

Setup Procedure ... 5

Create a New Project ... 6

Create a New Project .. 6

Design the Project .. 6

Add Two Static Text Objects to Form0 .. 6

Add a Magic Object to Form0 .. 6

Model .. 7

File Access Operations 7

File Read 7

WRITE_MAGIC_BYTES 8

REPORT_MAGIC_EVENT_BYTES 9

File Read Error 10

Small Files 10

Large Files 11

Large Files – 1st Packet 12

Large Files – 2nd Packet 12

The Magic Object .. 13

Diagram A. Implementation of the General Model Using a Magic

Object ... 14

Diagram B. Implementation of the File Access Model Using a

Magic Object ... 14

Is the Message a WRITE_MAGIC_BYTES Message? 14

Parse the Array for the Filename 14

Start Constructing the REPORT_MAGIC_EVENT_BYTES Message15

Extract the Command Byte 15

Is cmd Equal to “MFILE_READ”? 15

Diagram C. File Read Operation ... 15

Open the File 15

Check for Error 15

Get the File Size 16

Get a Byte from the File then Send it to the Serial Port 16

Build and Upload the Project ... 16

Copy the uSD Card Files ... 16

Identify the Messages .. 17

Use the GTX Tool to Analyse the Messages 17

Launch the GTX Tool 17

The File does not Exist .. 17

WRITE_MAGIC_BYTES Message 17

REPORT_MAGIC_EVENT_BYTES Message 19

The File is Less than 253 Bytes in Size 19

APPLICATION NOTES 4D-AN-00161

Page 5 of 24 www.4dsystems.com.au

WRITE_MAGIC_BYTES Message 19

REPORT_MAGIC_EVENT_BYTES Message 21

The File is more than 253 Bytes in Size 21

WRITE_MAGIC_BYTES Message 21

REPORT_MAGIC_EVENT_BYTES Message 22

Proprietary Information ... 24

Disclaimer of Warranties & Limitation of Liability 24

Application Overview

In the past it was not possible for a host to access files stored in the uSD card

of a display module loaded with a ViSi-Genie application. With Workshop 4

Pro it is now possible to accomplish this through the use of the Magic Object.

The Magic Object is one of the objects available under the Genie Magic

pane. It is actually a 4DGL function which allows users to program the display

to handle bytes received from an external host. The user, for instance, can

create a Magic Object that waits for 14 bytes from the host. The 14 bytes

can contain an instruction byte, followed by a null-terminated 8.3 format

filename (e.g. "datalog1.txt"). The instruction byte can be a file read, a file

write, a file append, etc. Upon receiving a file read instruction together with

the filename, for example, the display module will send back the contents

of the file (if it exists) to the host. The ViSi-Genie example project

“FileAccess.4DGenie” is an example of the above application.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00161

Page 6 of 24 www.4dsystems.com.au

Create a New Project

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16)

Design the Project

Add Two Static Text Objects to Form0

Two static text objects are added to Form0. These are Statictext0 and

Statictext1.

To know more about static text objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie Labels, Text, and Strings

Add a Magic Object to Form0

A Magic Object is added to Form0. This is MagicObject0.

To know more about Magic Objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie How to Add Magic Objects

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/appnote/4D-AN-00013/
http://www.4dsystems.com.au/appnote/4D-AN-00182/

APPLICATION NOTES 4D-AN-00161

Page 7 of 24 www.4dsystems.com.au

Model

File Access Operations

Below is a general model for an application that performs file access

operations.

The WRITE_MAGIC_BYTES and REPORT_MAGIC_EVENT_BYTES messages

or commands are two complementary messages that are used in ViSi-Genie

Magic. The host sends a WRITE_MAGIC_BYTES message, and the display

module, after performing the requested operation, replies with a

REPORT_MAGIC_EVENT_BYTES message. Steps 2 and 3 can be

implemented using a Magic Object.

File Read

Below is a model specific to an application that performs a file read

operation.

The display module sends data

back to the host if necessary in the form

of a REPORT_MAGIC_EVENT_BYTES

message. The display module then sends

an acknowledgment (ACK).

Host
The host sends a WRITE_MAGIC_BYTES

message containing a command byte,

the filename, and data (if needed). The

command byte dictates the file

operation to be performed.

Display

Module

The display

module evaluates the

command byte and

performs the requested

file operation.

1

2

3 3

Host
The host sends a WRITE_MAGIC_BYTES

message containing the command byte

“MFILE_READ” and the name of the file

to be read.

Display

Module

After checking

that the command byte

is “MFILE_READ”, the

display module opens

the file and starts

reading it byte-by-byte.

1

2

The display module, after

reading a byte from the file, sends

it to the host. The bytes are sent by

packets in the form of

REPORT_MAGIC_EVENT_BYTES

messages. After all bytes of the file

are read and sent, the display

module sends an acknowledgment

(ACK).

APPLICATION NOTES 4D-AN-00161

Page 8 of 24 www.4dsystems.com.au

Section 5.4 (Genie Magic File Access object) of the ViSi-Genie Reference

Manual documents the seven file operations implemented in the example

project “FileAccess.4DGenie”. For this application note, will take look at

MFILE_READ.

WRITE_MAGIC_BYTES

The standard format of WRITE_MAGIC_BYTES message, as defined in

section 2.1.2 (Command and Parameters Table) of the ViSi-Genie Reference

Manual is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Array (1 byte values) Checksum

Section 5.4 (Genie Magic File Access object) of the ViSi-Genie Reference

Manual describes the WRITE_MAGIC_BYTES message for a file read

operation (as expected by FileAcces.4DGenie).

Function Byte
Value

Description and
notes

Parameters Response

MFILE_READ 0 Read a file. This
reads the entire
file.

Function code,
Filename

More/final,

bytes

Thus, a WRITE_MAGIC_BYTES message specific to a file read operation, has

the format:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Function code + filename Checksum

Let us look at two examples of a WRITE_MAGIC_BYTES message sent from

a host to the display for a file read operation.

To read the contents of the file “notexist.txt”, the host would send:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Function code + filename Checksum

To read the contents of the file “data.log”, the host would send:

MFILE_READ notexist.txt null

terminator

APPLICATION NOTES 4D-AN-00161

Page 9 of 24 www.4dsystems.com.au

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Function code + filename Checksum

REPORT_MAGIC_EVENT_BYTES

The standard format of REPORT_MAGIC_EVENT_BYTES message, as defined

in section 2.1.2 (Command and Parameters Table) of the ViSi-Genie

Reference Manual is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

Section 5.4 (Genie Magic File Access object) of the ViSi-Genie Reference

Manual states that a REPORT_MAGIC_EVENT_BYTES message for a file read

operation, as implemented in FileAcces.4DGenie, will have the following

additional data.

Command(s) Type Notes

Read Function code MFILE_READ

 ‘Null’ Only the ‘function code’ will be sent if
an error occurs (eg file does not exist)

More / Final byte 0x00 indicates this is the last data for
the file, 0xFF indicates another
message follows this one.

Bytes Up to 255 bytes will be in each
message. i.e. up to 253 bytes of file
data

MFILE_READ data.log
null

terminator

APPLICATION NOTES 4D-AN-00161

Page 10 of 24 www.4dsystems.com.au

File Read Error

If an error occurs during the file read operation (e.g. the file to be read does

not exist), an empty or null REPORT_MAGIC_EVENT_BYTES message is sent

back by the display module. The message will contain only the command

byte for file read. For example, if the file “notexist.txt” does not exist, the

display module would reply with the message shown below, followed by an

acknowledgment byte (ACK).

Host:

Display
Module:

Display
Module
(ACK):

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

Small Files

For this case we assume that the text file “data.log” exists on the uSD card

of the display module. This text file contains a short string less than 253

bytes long.

The display module would reply with the message shown below, followed

by an acknowledgment byte (ACK).

Host:

Display
Module:

Display
Module
(ACK):

MFILE_READ

APPLICATION NOTES 4D-AN-00161

Page 11 of 24 www.4dsystems.com.au

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

Large Files

For a more reliable data transfer, the contents of a large file being read are

divided into packets, each of which is 253 bytes long. Each packet is then

inserted into a REPORT_MAGIC_EVENT_BYTES message. To illustrate the

case for data transfer of large files, we assume that the file “ascii.txt” exists

on the uSD card. This file contains alphanumeric characters and is 318 bytes

long.

The contents of the file will be divided into two packets. The first packet is

253 bytes long, and the second is 65 bytes long. To illustrate,

Host:

Display
Module
(1st
packet):

Display
Module
(2nd
packet):

Display
Module
(ACK):

MFILE_READ

MFILE_READ THIS BYTE (0x00)

INDICATES THAT NO

MESSAGE FOLLOWS.

hello 4D!

APPLICATION NOTES 4D-AN-00161

Page 12 of 24 www.4dsystems.com.au

Large Files – 1st Packet

Note that the screenshot image of the message was cropped.

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

Large Files – 2nd Packet

Note that the screenshot image of the message was cropped.

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

For a successful file read operation, the fifth byte of a

REPORT_MAGIC_EVENT_BYTES message indicates if another message

follows or not. Using this byte as a flag, the host would know when the data

transfer of a large file is complete.

MFILE_READ THIS BYTE (0x00)

INDICATES THAT NO

MESSAGE FOLLOWS.

Z..1234567… MFILE_READ THIS BYTE (0x00)

INDICATES THAT NO

MESSAGE FOLLOWS.

Z..1234567…

APPLICATION NOTES 4D-AN-00161

Page 13 of 24 www.4dsystems.com.au

The Magic Object

Going back to our working model for a file read operation, the host would

need to send a WRITE_MAGIC_BYTES message to the display module (step

1). The display module then performs a file read operation (step 2) and

sends back the contents of the file to the host in the form of

REPORT_MAGIC_EVENT_BYTES messages, along with an ACK byte (step 3).

We have also seen that the demo “FileAccess.4DGenie” expects the host to

follow a certain format for a WRITE_MAGIC_BYTES message. The demo

“FileAccess.4DGenie” also follows a certain format when it constructs a

REPORT_MAGIC_EVENT_BYTES message to be sent back to the host. These

formats are in addition to the standard formats of WRITE_MAGIC_BYTES

and REPORT_MAGIC_EVENT_BYTES messages described in the ViSi-Genie

Reference Manual.

The demo “FileAccess.4DGenie” uses a Magic Object to receive and handle

WRITE_MAGIC_BYTES messages, to perform the requested operation, and

to send REPORT_MAGIC_EVENT_BYTES messages.

The prototype of the 4DGL function inside a Magic Object is:

rMagicObject0(var action, var object, var newVal, var *ptr);

Since this function will be used to receive and handle the

WRITE_MAGIC_BYTES message coming from the host, it is expected that the

passed parameters will give the user access to the received

WRITE_MAGIC_BYTES message. Below are the descriptions of the

parameters, as per the section “5.1 Genie Magic callable Functions” of the

ViSi-Genie Reference Manual.

Parameter Description

action The command that was received from the host, one of
1. READ_OBJ,
2. WRITE_OBJ,
3. WRITE_MAGIC_BYTES or
4. WRITE_MAGIC_DBYTES

object Normally the object received from the host will be the
same as the n in the function name, but since you could
call this function internally it might be something else.

newVal N/A for Action of READ_OBJ, New value for Action of
WRITE_OBJ, Otherwise number of parameters in the ptr
array.

ptr N/A for Action of READ_OBJ and WRITE_OBJ, otherwise
Pointer to array of parameters passed. Array is always a
standard Picaso/Diablo integer array. For
WRITE_MAGIC_BYTES each element contains a byte.

For the example project “FileAccess.4DGenie”, the parameter “action” is

WRITE_MAGIC_BYTES. The parameter “object” is MagicObject0. The

parameter “newVal” is the length of the array or the combined length of the

command byte and the filename string. The parameter “ptr” is a pointer to

the array which will contain the data from the host.

APPLICATION NOTES 4D-AN-00161

Page 14 of 24 www.4dsystems.com.au

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Array (1 byte values) Checksum

rMagicObject0(var action, var object, var newVal, var *ptr);

Diagram A. Implementation of the General Model Using a Magic

Object

Attached is the PDF file “programFlow.pdf”. It contains three diagrams, the

first of which illustrates the implementation of the general model. This

diagram represents the example project “FileAccess.4DGenie”. The area

bounded by the broken lines is implemented using a Magic Object.

Diagram B. Implementation of the File Access Model Using a Magic

Object

The second diagram of the PDF file “programFlow.pdf” represents the scope

of this application note – the file read operation.

Is the Message a WRITE_MAGIC_BYTES Message?

Parse the Array for the Filename

The array pointed to by ptr is an array composed of 16-bit elements. The

filename is to be extracted from this array. In 4DGL, characters can be stored

as 16-bit elements in an array (word-aligned) or as a string (byte-aligned).

The string class functions apply only to strings. To illustrate:

16-bit element array

address ptr[1] ptr[2] ptr[3] ptr[4] ptr[5]

Content 0x0061 0x0073 0x0063 0x0069 0x0069

char a s c i i

ptr[6] ptr[7] ptr[8] ptr[9] ptr[10]

0x002E 0x0074 0x0078 0x0074 0x0000

. t x t null

4DGL string

address ptr[1] ptr[2] ptr[3] ptr[4] ptr[5]

Content 0x7361 0x6963 0x2E69 0x7874 0x0074

char sa ic .i xt nullt

Note the difference in endianness and manner of storage. The message

received from the host is stored in the array pointed to by ptr. This array is

internal to Genie and is word-aligned. Since the demo “FileAccess.4DGenie”

uses string class functions to operate on the filename, there is therefore a

APPLICATION NOTES 4D-AN-00161

Page 15 of 24 www.4dsystems.com.au

need to convert the ordinary 16-bit element array containing the filename

to a 4DGL string. Hence the routine

The 4DGL string class operations can now be used to operate on or

manipulate the filename converted as a 4DGL string. Prior to this however,

a string pointer to the filename must be defined.

For more information on 4DGL strings, please refer to the Picaso or Diablo16

Internal Functions Reference Manual. Right-click on a string class function

name text and choose “Context Sensitive help” to open the manual. Also,

the application note below discusses strings in 4DGL.

Designer or ViSi String Class Function

Start Constructing the REPORT_MAGIC_EVENT_BYTES Message

To know more about the function “seroutCS(…)”,see section 5.1 Genie

Magic callable Functions of the ViSi-Genie Reference Manual.

Extract the Command Byte

Is cmd Equal to “MFILE_READ”?

Diagram C. File Read Operation

The third diagram of the PDF file “programFlow.pdf” presents a more

detailed view of the file read operation.

Open the File

The function “file_Open(…)” is one of the several FAT16 file functions in

4DGL. FAT16 file functions are used mainly for accessing and modifying files

on a FAT16-formatted uSD card. For more information on the FAT16 file

functions, please refer to the Picaso or Diablo16 Internal Functions

Reference Manual. Right-click on a FAT16 file function name text and choose

“Context Sensitive help” to open the manual.

Check for Error

http://www.4dsystems.com.au/appnote/4D-AN-00056/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00161

Page 16 of 24 www.4dsystems.com.au

Get the File Size

The function “file_Size(…)” is one of the several FAT16 file functions in 4DGL.

FAT16 file functions are used mainly for accessing and modifying files on a

FAT16-formatted uSD card. For more information on the FAT16 file

functions, please refer to the Picaso or Diablo16 Internal Functions

Reference Manual. Right-click on a FAT16 file function name text and choose

“Context Sensitive help” to open the manual.

Get a Byte from the File then Send it to the Serial Port

The function “file_GetC(…)” is one of the several FAT16 file functions in

4DGL. FAT16 file functions are used mainly for accessing and modifying files

on a FAT16-formatted uSD card. For more information on the FAT16 file

functions, please refer to the Picaso or Diablo16 Internal Functions

Reference Manual. Right-click on a FAT16 file function name text and choose

“Context Sensitive help” to open the manual.

Build and Upload the Project

For instructions on how to build and upload a ViSi-Genie project to the

target display, please refer to the section “Build and Upload the Project” of

the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly

used as examples, but the procedure is the same for other displays.

Copy the uSD Card Files

Attached to this application note is the folder “uSD card files” which

contains two files as shown below. Copy these files to the uSD card before

inserting it to the uSD card slot of the display module.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00161

Page 17 of 24 www.4dsystems.com.au

Identify the Messages

The display module is going to send and receive messages to and from an

external host. This section explains to the user how to interpret these

messages. An understanding of this section is necessary for users who

intend to interface the display to a host. The ViSi Genie Reference Manual is

recommended for advanced users.

Use the GTX Tool to Analyse the Messages

Using the GTX or Genie Test eXecutor tool is one option to get the messages

sent by the display to the host. Here the PC will be the host. The GTX tool is

a part of the Workshop 4 IDE. It allows the user to receive, observe, and send

messages from and to the display module. It is an essential debugging tool.

Launch the GTX Tool

Under the Tools menu click on the GTX tool button.

The Genie Test eXecutor window appears.

In this section we will illustrate three cases for the file read operation:

1. The file does not exist

2. The file is less than 253 bytes in size

3. The file is more than 253 bytes in size

The File does not Exist

WRITE_MAGIC_BYTES Message

Send the MFILE_READ command and the filename as a

WRITE_MAGIC_BYTES message.

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00161

Page 18 of 24 www.4dsystems.com.au

The GTX tool sends the WRITE_MAGIC_BYTES message.

1

2

3

4

5

APPLICATION NOTES 4D-AN-00161

Page 19 of 24 www.4dsystems.com.au

The format of this message is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Array (1 byte values) Checksum

REPORT_MAGIC_EVENT_BYTES Message

Since the file does not exist, the display module replies with a null or empty

REPORT_MAGIC_EVENT_BYTES message and an ACK byte.

The format of this message is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

The File is Less than 253 Bytes in Size

WRITE_MAGIC_BYTES Message

Send the MFILE_READ command and the filename as a

WRITE_MAGIC_BYTES message.

MFILE_READ notexist.txt null

terminator

MFILE_READ

APPLICATION NOTES 4D-AN-00161

Page 20 of 24 www.4dsystems.com.au

The GTX tool sends the WRITE_MAGIC_BYTES message.

The format of this message is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Array (1 byte values) Checksum

1

2

3

4

5

MFILE_READ data.log
null

terminator

APPLICATION NOTES 4D-AN-00161

Page 21 of 24 www.4dsystems.com.au

REPORT_MAGIC_EVENT_BYTES Message

Since the file is less than 253 bytes in size, the display module replies with a

single REPORT_MAGIC_EVENT_BYTES message that contains the data inside

the file and an ACK byte.

The format of this message is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

The File is more than 253 Bytes in Size

WRITE_MAGIC_BYTES Message

Send the MFILE_READ command and the filename as a

WRITE_MAGIC_BYTES message.

1

2

3

MFILE_READ THIS BYTE (0x00)

INDICATES THAT NO

MESSAGE FOLLOWS.

hello 4D!

APPLICATION NOTES 4D-AN-00161

Page 22 of 24 www.4dsystems.com.au

The GTX tool sends the WRITE_MAGIC_BYTES message.

The format of this message is:

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

WRITE_
MAGIC_
BYTES

0x08 Object
Index

Length Array (1 byte values) Checksum

REPORT_MAGIC_EVENT_BYTES Message

Since the file is more than 253 bytes in size, the contents are divided into

two packets which are then inserted into REPORT_MAGIC_EVENT_BYTES

messages.

The format of these messages is as follows. Note that the screenshot images

of the messages were cropped.

1st Packet

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

4

5

MFILE_READ ascii.txt
null

terminator

MFILE_READ THIS BYTE (0xFF)

INDICATES THAT A

MESSAGE FOLLOWS.

1234567890…

APPLICATION NOTES 4D-AN-00161

Page 23 of 24 www.4dsystems.com.au

2nd Packet

Command Code Para-
meter 1

Para-
meter 2

Para-
meter 3

Para-
meter 4

Para-
meter N

Checksum

REPORT_
MAGIC_
EVENT_
BYTES

0x0A Object
Index

Length Array (1 byte values) Checksum

MFILE_READ THIS BYTE (0x00)

INDICATES THAT NO

MESSAGE FOLLOWS.

Z..1234567…

APPLICATION NOTES 4D-AN-00161

Page 24 of 24 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Create a New Project

	Design the Project
	Add Two Static Text Objects to Form0
	Add a Magic Object to Form0
	Model
	File Access Operations
	File Read
	WRITE_MAGIC_BYTES
	REPORT_MAGIC_EVENT_BYTES
	File Read Error
	Small Files
	Large Files
	Large Files – 1st Packet
	Large Files – 2nd Packet

	The Magic Object
	Diagram A. Implementation of the General Model Using a Magic Object
	Diagram B. Implementation of the File Access Model Using a Magic Object
	Is the Message a WRITE_MAGIC_BYTES Message?
	Parse the Array for the Filename
	Start Constructing the REPORT_MAGIC_EVENT_BYTES Message
	Extract the Command Byte
	Is cmd Equal to “MFILE_READ”?

	Diagram C. File Read Operation
	Open the File
	Check for Error
	Get the File Size
	Get a Byte from the File then Send it to the Serial Port

	Build and Upload the Project
	Copy the uSD Card Files
	Identify the Messages
	Use the GTX Tool to Analyse the Messages
	Launch the GTX Tool

	The File does not Exist
	WRITE_MAGIC_BYTES Message
	REPORT_MAGIC_EVENT_BYTES Message

	The File is Less than 253 Bytes in Size
	WRITE_MAGIC_BYTES Message
	REPORT_MAGIC_EVENT_BYTES Message

	The File is more than 253 Bytes in Size
	WRITE_MAGIC_BYTES Message
	REPORT_MAGIC_EVENT_BYTES Message

	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

